Способы изготовления печатных плат. Делаем печатную плату

Эта страница является руководством по производству высококачественных печатных плат (далее ПП) быстро и эффективно, особенно для профессионального макетирования производства ПП. В отличие от большинства других руководств, акцент делается на качестве, скорости и минимальной стоимости материалов.

С помощью описанных на этой странице методов вы сможете сделать одностороннюю и двухстороннюю плату достаточно хорошего качества, пригодную для поверхностного монтажа с шагом расположения элементов 40-50 элементов на дюйм и с шагом расположения отверстий 0.5 мм.

Методика, описанная здесь, является суммированным опытом, собранным в течение 20 лет экспериментов в этой области. Если вы будете точно следовать описанной здесь методике, то сможете каждый раз получать ПП отличного качества. Конечно, вы можете экспериментировать, но помните, что неосторожные действия могут привести к существенному снижению качества.

Здесь представлены только фотолитографические методы формирования топологии ПП - другие способы, такие как трансферт, печать на меди и т.п., которые не подходят для быстрого и эффективного использования, не рассматриваются.

Сверление

Если в качестве основного материала вы используете FR-4, то вам понадобятся сверла, покрытые карбидом вольфрама, сверла из быстрорежущих сталей очень быстро изнашиваются, хотя сталь можно применять для сверления одиночных отверстий большого диаметра (больше 2 мм), т.к. сверла с напылением карбида вольфрама такого диаметра слишком дорогие. При сверлении отверстий диаметром меньше 1 мм, лучше использовать вертикальный станок, иначе ваши сверла будут быстро ломаться. Движение сверху вниз самое оптимальное с точки зрения нагрузки на инструмент. Карбидные сверла изготавливают с жестким хвостовиком (т.е. сверло точно соответствует диаметру отверстия), или с толстым (иногда называют "турбо") хвостовиком, имеющим стандартный размер (обычно 3.5 мм).

При сверлении сверлами с карбидным напылением важно жестко закрепить ПП, т.к. сверло может при движении вверх вырвать фрагмент платы.

Сверла маленьких диаметров обычно вставляются либо в цанговый патрон различных размеров, либо в трех кулачковый патрон - иногда 3-х кулачковый патрон является оптимальным вариантом. Для точного фиксирования, однако, это закрепление не подходит, и маленький размер сверла (меньше 1 мм) быстро делает желобки в зажимах, обеспечивающих хорошую фиксацию. Поэтому для сверл диаметром меньше 1 мм лучше использовать цанговый патрон. На всякий случай приобретите дополнительный набор, содержащий запасные цанги для каждого размера. Некоторые недорогие сверла производят с пластиковыми цангами - выбросите их и купите металлические.

Для получения приемлемой точности необходимо правильно организовать рабочее место, т.е., во-первых, обеспечить освещение платы при сверлении. Для этого можно использовать 12 В галогеновую лампу (или 9В, чтобы уменьшить яркость) прикрепив ее на штативе для возможности выбирать позицию (освещать правую сторону). Во-вторых, поднять рабочую поверхность примерно на 6" выше высоты стола, для лучшего визуального контроля процесса. Неплохо было бы удалить пыль (можно использовать обычный пылесос), но это не обязательно - случайное замыкание цепи пылевой частицей - это миф. Надо отметить, что пыль от стекловолокон, образующаяся при сверлении, очень колкая, и при попадании на кожу вызывает ее раздражение. И, наконец, при работе очень удобно пользоваться ножным включателем сверлильного станка, особенно при частой замене сверл.

Типичные размеры отверстий:
· Переходные отверстия - 0.8 мм и менее
· Интегральная схема, резисторы и т.д. - 0.8 мм.
· Большие диоды (1N4001) - 1.0 мм;
· Контактные колодки, триммеры - от 1.2 до 1.5 мм;

Старайтесь избегать отверстия диаметром менее 0.8 мм. Всегда держите не менее двух запасных сверл 0.8 мм, т.к. они всегда ломаются именно в тот момент, когда вам срочно надо сделать заказ. Сверла 1 мм и больше намного надежнее, хотя и для них неплохо бы иметь запасные. Когда вам надо изготовить две одинаковые платы, то для экономии времени их можно сверлить одновременно. При этом необходимо очень аккуратно сверлить отверстия в центре контактной площадки около каждого угла ПП, а для больших плат - отверстия, расположенные близко от центра. Итак, положите платы друг на друга и просверлите отверстия 0.8 мм в двух противоположных углах, затем, используя штифты как колышки, закрепите платы относительно друг друга.

Резка

Если вы производите ПП серийно, вам понадобится для резки гильотинные ножницы (стоят они около 150 у.е.). Обычные пилы быстро тупятся, за исключением пил с карбидовым покрытием, а пыль во время пилки может вызвать раздражение кожи. Пилой можно случайно повредить защитную пленку и разрушить проводники на готовой плате. Если вы хотите пользоваться гильотинными ножницами, то будьте очень осторожны при отрезании платы, помните, что лезвие очень острое.

Если вам надо отрезать плату по сложному контуру, то это можно сделать либо просверлив много маленький отверстий и отломав ПП по полученным перфорациям, либо с помощью лобзика или маленькой ножовки, но приготовьтесь часто менять лезвие. Практически можно сделать угловой срез и гильотинными ножницами, но будьте очень осторожны.

Сквозная металлизация

Когда вы делаете двухстороннюю плату, возникает проблема объединения элементов на верхней стороне платы. Некоторые компоненты (резистор, поверхностные интегральные схемы) намного легче припаять, чем другие (например конденсатор со штыревыми выводами), поэтому возникает мысль: сделать поверхностное соединение только "легких" компонентов. А для DIP-компонентов использовать штифты, причем предпочтительнее использовать модель с толстым штифтом, а не с разъемом.

Немного приподнимите DIP-компонент над поверхностью платы и спаяйте пару штырьков со стороны припоя, сделав на конце небольшую шляпку. Затем надо припаять требуемые компоненты к верхней стороне с помощью повторного нагрева, причем при пайке дождитесь, пока припой заполнит пространство вокруг штырька (см. рисунок). Для плат с очень плотным расположением элементов необходимо хорошо продумать компоновку, чтобы облегчить пайку DIP-компонентов. После того, как вы закончили сборку платы, необходимо произвести двухсторонний контроль качества монтажа.

Для переходных отверстий используют быстромонтируемые связующие штыри диаметром 0.8 мм (см. рисунок).

Это самый доступный способ электрического соединения. Вам потребуется всего лишь точно ввести конец прибора в отверстие на всю длину, повторить тоже с другими отверстиями.Если вам необходимо произвести сквозную металлизацию, например, чтобы соединить недоступные элементы, или для DIP- компонентов (связующих штырей), вам понадобится система "Copperset". Эта установка очень удобна, но дорогостоящая (350$). Она использует "пластинчатые бруски" (см. рисунок), которые состоят из бруска припоя с медной втулкой металлизированной с наружной стороны. На втулке нарезаны засечки с интервалом 1.6 мм, соответствующие толщине платы. Брусок вводится в отверстие с помощью специального аппликатора. Затем отверстие пробивают керном, который вызывает перекос металлизированной втулки, и также выталкивает втулку из отверстия. Контактные площадки напаиваются с каждой стороны платы для присоединения втулки к контактным площадкам, затем припой удаляется вместе с оплеткой.

К счастью, эту систему возможно использовать для металлизации стандартных отверстий 0.8 мм без приобретения полного комплекта. В качестве аппликатора можно использовать любой автоматический карандаш диаметром 0.8 мм, модель которого имеет наконечник похожий на изображенный на рисунке, работающий намного лучше, чем настоящий аппликатор.Металлизацию отверстий надо производить до начала монтажа, пока поверхность платы совершенно плоская. Отверстия должны быть просверлены диаметром 0.85 мм, т.к. после металлизации их диаметры уменьшаются.

Заметим, что если ваша программа чертила контактные площадки таким же размером, что и размер сверла, то отверстия могут выходить за их пределы, приводя к неисправностям платы. Идеально, чтобы контактная площадка выходила за пределы отверстия на 0.5 мм.

Металлизация отверстий на основе графита

Второй вариант получения проводимости через отверстия - металлизация графитом, с последующим гальваническим осаждением меди. После сверления поверхность платы покрывается аэрозольным раствором, содержащим мелкодисперсные частицы графита, который затем ракелем (скребком или шпателем) продавливается в отверстия. Можно использовать аэрозоль фирмы CRAMOLIN "GRAPHITE". Данный аэрозоль широко используется в гальванопластике и других гальванических процессах, а также при получении проводящих покрытий в радиоэлектронике. Если основу составляет легколетучее вещество, то необходимо сразу же встряхнуть плату в направлении перпендикулярном плоскости платы, так чтобы излишки пасты удалились из отверстий до испарения основы. Излишки графита с поверхности удаляются растворителем или механически - шлифованием. Необходимо отметить, что размер полученного отверстия может быть меньше на 0.2 мм исходного диаметра. Загрязненные отверстия можно прочистить с помощью иглы или иначе. Кроме аэрозолей можно использовать коллоидные растворы графита. Далее на проводящие цилиндрические поверхности отверстий осаждается медь.

Гальванический процесс осаждения хорошо отработан и широко описан в литературе. Установка для проведения данной операции представляет собой ёмкость, заполненную раствором электролита (насыщенный раствор Cu 2 SO 4 +10% раствор H 2 SO 4), в которую опущены медные электроды и заготовка. Между электродами и заготовкой создается разность потенциалов, которая должна обеспечить плотность тока не более 3-х ампер на квадратный дециметр поверхности заготовки. Большая плотность тока позволяет достигать больших скоростей осаждения меди. Так для осаждения на заготовку толщиной 1.5 мм необходимо осадить до 25 мкм меди, при такой плотности этот процесс идет чуть более получаса. Для интенсификации процесса в раствор электролита могут добавляться различные присадки, а жидкость может подвергаться механическому перемешиванию, борбатажу и др. При неравномерном нанесении меди на поверхность заготовка может быть отшлифована. Процесс металлизации графитом, как правило, использует в субтрактивной технологии, т.е. перед нанесением фоторезиста.

Вся паста, оставшаяся перед нанесением меди, уменьшает свободный объем отверстия и придает отверстию неправильную форму, что осложняет дальнейший монтаж компонентов. Более надежным методом удаления остатков токопроводящей пасты является вакуумирование или продувка избыточным давлением.

Формирование фотошаблона

Вам необходимо произвести позитивную (т.е. черный = медь) полупрозрачную пленку фотошаблона. Вы никогда не сделаете действительно хорошую ПП без качественного фотошаблона, поэтому эта операция имеет большое значение. Очень важно получить четкое и предельно непрозрачное изображение топологии ПП.

На сегодняшний день и в будущем фотошаблон будут формировать с помощью компьютерных программ семейства или пригодных для этой цели графических пакетов. В данной работе мы не будем обсуждать достоинства программного обеспечения, скажем только, что вы можете использовать любые программные продукты, но совершенно необходимо, чтобы программа выводила на печать отверстия, расположенные в центре контактной площадки, используемые при последующей операции сверления как маркеры. Практически невозможно вручную просверлить отверстия без этих ориентиров. Если вы хотите использовать CAD общего назначения или графические пакеты, то в установках программы задайте контактные площадки либо как объект, содержащий черную залитую область с белой концентрической окружностью меньшего диаметра на ее поверхности, или как незаполненную окружность, установив предварительно большую толщину линии (т.е. черное кольцо).

Как только определили расположение контактных площадок и типы линий, устанавливаем рекомендуемые минимальные размеры:
- сверлильного диаметра - (1 мил = 1/1000 дюйма) 0.8 мм Вы можете изготовить ПП и с меньшим диаметром сквозных отверстий, но это будет уже намного сложнее.
- контактные площадки для нормальных компонентов и DIL LCS: 65 мил круглые или квадратные площадки с диаметром отверстия 0.8 мм.
- ширина линии - 12.5 мил, если вам необходимо, то можно получить и 10 мил.
- пространство между центрами дорожек шириной 12.5 мил - 25 мил (возможно, чуть меньше, если позволяет модель принтера).

Необходимо заботиться о правильном диагональном соединении треков на срезах углов (сетка - 25 мил, ширина дорожки - 12.5 мил).

Фотошаблон должен быть распечатан таким образом, чтобы при экспонировании сторона, на которую наносятся чернила, была повернута к поверхности ПП, для обеспечения минимального зазора между изображением и ПП. Практически это означает, что верхняя сторона двухсторонней ПП должна быть напечатана зеркально.

Качество фотошаблона очень зависит как от устройства вывода и материала фотошаблона, так и от факторов, которые мы обсудим далее.

Материал фотошаблона

Речь идет не об использовании фотошаблона средней прозрачности - поскольку для ультрафиолетового излучения достаточно будет полупрозрачного, это не существенно, т.к. для менее прозрачного материала время экспонирования увеличивается совсем немного. Разборчивость линий, непрозрачность черных областей и скорость высыхание тонера/чернил являются намного важнее. Возможные альтернативы при печати фотошаблона:
Прозрачная ацетатная пленка (OHP) - может показаться, что это наиболее очевидная альтернатива, но эта замена может дорого обойтись. Материал имеет свойство изгибаться или искажаться от нагрева лазерным принтером, и тонер/чернила могут потрескаться и легко осыпаться. НЕ РЕКОМЕНДУЕТСЯ
Полиэфирная чертежная пленка - хорошая, но дорогая, прекрасная размерная стабильность. Шершавая поверхность хорошо удерживает чернила или тонер. При использовании лазерного принтера необходимо брать толстую пленку, т.к. при нагревании тонкая пленка подвержена короблению. Но даже толстая пленка может деформироваться под действием некоторых принтеров. Не рекомендуется, но применение возможно.
Калька. Берите максимальную толщину, какую сможете найти - не менее 90 грамм на кв. метр (если возьмете тоньше, то она может покоробиться), 120 грамм на кв. метр будет даже лучше, но её труднее найти. Это недорого, и без особого труда можно достать в офисах. Калька обладает хорошей проницаемостью для ультрафиолетового излучения и по способности удерживать чернила близка к чертежной пленке, а по свойствам не искажаться при нагреве даже превосходит.

Устройство вывода

Pen plotters - кропотливый и медленный. Вы должны будете использовать дорогостоящую полиэфирную чертежную пленку (калька не годится, т.к. чернила наносятся одиночными линиями) и специальные чернила. Перо придется периодически чистить, т.к. оно легко засоряется. НЕ РЕКОМЕНДУЕТСЯ.
Струйные принтеры - главная проблема при использовании - добиться необходимой непрозрачности. Эти принтеры настолько дешевы, что, конечно, их стоит попробовать, но качество их печати не сравнить с качеством лазерных принтеров. Также можно попробовать напечатать сначала на бумаге, а потом с помощью хорошего ксерокса перевести изображение на кальку.
Наборщики - для лучшего качества фотошаблона создают Postscript или PDF файл и пересылают на DTP или наборщик. Фотошаблон, изготовленный таким образом, будет иметь разрешение не менее 2400DPI, абсолютную непрозрачность черных областей и совершенную резкость изображения. Стоимость обычно приводится для одной страницы, не считая использованной области, т.е. если вы сможете мультиплицировать копии ПП или разместить на одной странице изображение обоих сторон ПП, то вы сэкономите деньги. На таких устройствах также можно сделать большую плату, формат которой не обеспечивается вашим принтером.
Лазерные принтеры - легко обеспечивают наилучшее разрешение, доступны и быстры. Используемый принтер должен иметь разрешение не менее 600dpi для всех ПП, т.к. нам необходимо сделать 40 полос на дюйм. 300DPI не сможет разделить дюйм на 40 в отличие от 600DPI.

Также важно отметить, что принтер производит хорошие черные отпечатки без вкраплений тонера. Если вы планируете купить принтер для изготовления ПП, то первоначально необходимо протестировать данную модель на обычном листе бумаги. Даже лучшие лазерные принтеры могут не покрывать полностью большие области, но это не является проблемой, если пропечатываются тонкие линии.

При использовании кальки или чертежной пленки необходимо иметь руководство по заправке бумаги в принтер и правильно осуществлять смену пленки, чтобы избежать заклинивания аппаратуры. Помните, что при производстве маленьких ПП, для экономии пленки или кальки, можно разрезать листы пополам или до нужного формата (например, разрезать А4, чтобы получить А5).

Некоторые лазерные принтеры печатают с плохой точностью, но поскольку любая ошибка линейна, то ее можно компенсировать масштабированием данных при выводе на печать.

Фоторезист

Лучше всего использовать стеклотекстолит FR4,уже с нанесенным пленочным резистом. В противном случае вам придется самостоятельно покрывать заготовку. Вам не понадобится темная комната или приглушенное освещение, просто избегайте попадания прямых солнечных лучей, минимизируя избыточное освещение, и производите проявку непосредственно после облучения ультрафиолетом.

Редко применяются жидкие фоторезисты, которые наносятся распылением и покрывают медь тонкой пленкой. Я не рекомендовал бы их использование, если вы не имеете условий для получения очень чистой поверхности или хотите получить ПП с низким разрешением.

Экспонирование

Плату, покрытую фоторезистом, необходимо подвергнуть облучению ультрафиолетовым излучением через фотошаблон, используя УФ-установку.

При экспонировании можно использовать стандартные флуоресцентные лампы и УФ камеры. Для маленькой ПП - две или четыре 8-ваттных 12" ламп будет достаточно, для больших (А3) идеально использовать четыре 15" 15 ваттных ламп. Чтобы определить расстояние от стекла до лампы при экспонировании, поместите лист кальки на стекле и отрегулируйте расстояние, чтобы получить необходимый уровень освещения поверхности бумаги. Необходимые вам УФ лампы продают или как сменная деталь для установки, применяемой в медицине, или лампы "черного света" для освещения дискотек. Они окрашены в белый или иногда в черный/синий цвет и светятся фиолетовым светом, который делает бумагу флуоресцентной (она начинает ярко светиться). НЕ ИСПОЛЬЗУЙТЕ коротковолновые УФ лампы, похожие на стираемые программируемые ПЗУ или бактерицидные лампы, которые имеют чистые стекла. Они испускают коротковолновое УФ излучение, которое может вызвать повреждение кожи и глаз, и не подходит для производства ПП.

Установку экспонирования можно оборудовать таймером, высвечивающим длительность воздействия излучения на ПП, предел его измерения должен быть от 2 до 10 минут с шагом 30 с. Неплохо было бы снабдить таймер звуковым сигналом, сообщающим об окончании времени экспонирования. Идеально было бы использовать механический или электронный таймер для микроволновой печи.

Вам придется экспериментировать, чтобы подобрать требуемое время экспонирования. Попробуйте провести экспонирование через каждые 30с, начиная с 20 секунд и заканчивая 10 минутами. Проявите ПП и сравните полученные разрешения. Заметьте, что при передержке изображение получается лучше, чем при недостаточном облучении.

Итак, для проведения экспонирования односторонней ПП поверните фотошаблон печатной стороной вверх на стекле установки, удалите защитную пленку и положите ПП чувствительной стороной вниз поверх фотошаблона. ПП должна быть прижата к стеклу, чтобы получить минимальный зазор для лучшего разрешения. Этого можно достичь либо положив на поверхность ПП какой-нибудь груз, либо присоединив к УФ-установки навесную крышку с каучуковым уплотнением, которая прижимает ПП к стеклу. В некоторых установках для лучшего контакта ПП фиксируют созданием вакуума под крышкой с помощью маленького вакуумного насоса.

При экспонировании двухсторонней платы сторона фотошаблона с тонером (более шершавая) прикладывается к стороне припоя ПП нормально, а к противоположной стороне (где будут размещаться компоненты) - зеркально. Приложив фотошаблоны печатной стороной друг к другу и совместив их, проверьте, чтобы все области пленки совпадали. Для этого удобно использовать столик с подсветкой, но он может быть заменен обычным дневным светом, если совмещать фотошаблоны на поверхности окна. Если при печати была потеряна координатная точность, это может привести к рассовмещению изображения с отверстиями; постарайтесь совместить пленки по среднему значению ошибки, следя за тем, чтобы переходные отверстия не выходили за края контактных площадок. После того как фотошаблоны соединены и правильно выровнены, прикрепите их к поверхности ПП скотчем в двух местах на противоположных сторонах листа (если плата большая - то по 3-м сторонам) на расстоянии 10 мм от края пластины. Оставлять промежуток между скрепками и краем ПП важно, т.к. это предотвратит повреждение кромки изображения. Используйте скрепки самого маленького размера, который сможете отыскать, чтобы толщина скрепки была не намного толще ПП.

Проэкспонируйте каждую сторону ПП по очереди. После облучения ПП вы сможете увидеть изображение топологии на пленке фоторезиста.

Наконец можно отметить, что короткое воздействие излучения на глаза не приносит вреда, но человек может почувствовать дискомфорт, особенно при использовании мощных ламп. Для рамы установки лучше использовать стекло, а не пластик, т.к. оно более жесткое и в меньшей степени подвержено появлению трещин при контакте.

Можно комбинировать УФ лампы и трубки белого света. Если у вас бывает много заказов на производство двухсторонних плат, то дешевле было бы приобрести установку двухстороннего экспонирования, где ПП помещаются между двумя световыми источниками, и излучению подвергаются обе стороны ПП одновременно.

Проявление

Главное, что нужно сказать про эту операцию, - НЕ ИСПОЛЬЗУЙТЕ ГИДРООКИСЬ НАТРИЯ при проявке фоторезиста. Это вещество совершенно не подходит для проявления ПП - помимо едкости раствора, к его недостаткам можно отнести сильную чувствительность к перемене температуры и концентрации, а также нестойкость. Это вещество слишком слабое, чтобы проявить все изображение и слишком сильное, чтобы растворить фоторезист. Т.е. с помощью этого раствора невозможно получить приемлемый результат, особенно если вы устроили свою лабораторию в помещении с частой сменой температуры (гараж, навес и т.п.).

Намного лучше в качестве проявителя раствор, произведенный на основе эфира кремневой кислоты, который продается в виде жидкого концентрата. Его химический состав - Na 2 SiO 3 *5H 2 O. Это вещество обладает огромным числом достоинств. Наиболее важным является то, что в нем очень трудно передержать ПП. Вы можете оставить ПП на точно не фиксированное время. Это также означает, что он почти не изменяет своих свойств при перепадах температуры - нет риска распада при увеличении температуры. Этот раствор также имеет очень большой срок хранения, и его концентрация сохраняется постоянной не менее пары лет.

Отсутствие проблемы передержки в растворе позволит вам увеличить его концентрацию для уменьшения времени проявления ПП. Рекомендуется смешивать 1 часть концентрата со 180 частями воды, т.е. в 200 мл воды содержится чуть более 1,7 гр. силиката, но возможно сделать более концентрированную смесь, чтобы изображение проявлялось примерно за 5 с без риска разрушения поверхности при передержке, при невозможности приобретения силиката натрия, можно использовать углекислый натрий или калий (Na 2 СO 3).

Вы можете контролировать процесс проявки погружением ПП в хлорид железа на очень короткое время - медь тотчас же потускнеет, при этом можно различить форму линий изображения. Если остаются блестящие участки или промежутки между линиями расплывчаты, промойте плату и подержите в проявочном растворе еще несколько секунд. На поверхности недодержанной ПП может остаться тонкий слой резиста, не удаленный растворителем. Чтобы удалить остатки пленки нужно мягко протереть ПП бумажным полотенцем, шероховатость которого достаточна, чтобы удалить фоторезист без повреждения проводников.

Вы можете использовать либо фотолитографическую проявочную ванну, либо вертикальный бак для проявки - ванна удобна тем, что она позволяет контролировать процесс проявки, не вынимая ПП из раствора. Вам не понадобятся нагреваемые ванны или баки, если температура раствора будет поддерживаться не меньше 15 градусов.

Еще один рецепт проявочного раствора: Взять 200 мл "жидкого стекла", добавить 800 мл дистиллированной воды и размешайте. Затем к этой смеси добавьте 400 г гидроксида натрия.

Меры предосторожности: Никогда не берите твердый гидроксид натрия руками, используйте перчатки. При растворении гидроксида натрия в воде выделяется большое количество тепла, поэтому растворять его надо небольшими порциями. Если раствор стал слишком горячим, то прежде чем добавить очередную порцию порошка, дайте ему остыть. Раствор очень едкий, и поэтому при работе с ним необходимо надеть защитные очки. Жидкое стекло также известно как " раствор силиката натрия" и " яичный консерватор". Оно используется для чистки водосточных труб и продается в любом хозяйственном магазине. Этот раствор нельзя сделать простым растворением твердого силиката натрия. Описанный выше проявочный раствор имеет такую же интенсивность, как и концентрат, и поэтому его необходимо разбавлять - на 1 часть концентрата 4-8 частей воды в зависимости от используемого резиста и температуры.

Травление

Обычно в качестве травителя используют хлорид железа. Это очень вредное вещество, но его легко получать и оно намного дешевле, чем большинство аналогов. Хлорид железа травит любой металл, включая нержавеющие стали, поэтому при установке оборудования для травления используйте пластический или керамический водослив, с пластиковыми винтами и шурупами, и при присоединении любых материалов болтами, их головки должны иметь кремнево-каучуковое уплотнение. Если же у вас металлические трубы, то защитите их пластиком (при установке нового слив идеально было бы использовать термостойкий пластик). Испарение раствора обычно происходит не очень интенсивно, но когда ванны или бак не используются, их лучше накрывать.

Рекомендуется использовать гексагидрат хлорида железа, который имеет желтую окраску, и продается в виде порошка или гранул. Для получения раствора их необходимо залить теплой водой и размешать до полного растворения. Производство можно существенно улучшить с точки зрения экологии, добавив в раствор чайную ложку столовой соли. Иногда встречается обезвоженный хлорид железа, который имеет вид коричнево-зеленых гранул. По возможности избегайте использования этого вещества. Его можно применять только в крайнем случае, т.к. при растворении в воде он выделяет большое количество тепла. Если вы все-таки решили сделать из него травильный раствор, то ни в коем случае не заливайте порошок водой. Гранулы нужно очень осторожно и постепенно добавлять к воде. Если получившийся раствор хлорного железа не вытравливает до конца резист, то попробуйте добавить небольшое количество соляной кислоты и оставить его на 1-2 дня.

Все манипуляции с растворами необходимо проводить очень аккуратно. Нельзя допускать разбрызгивания травителей обоих типов, т.к. при их смешении может произойти небольшой взрыв, из-за которого жидкость выплеснется из контейнера и может попасть в глаза или на одежду, что опасно. Поэтому во время работы надевайте перчатки и защитные очки и сразу же смывайте любые капли, попавшие на кожу.

Если вы производите ПП на профессиональной основе, где время - деньги, вы можете использовать нагреваемые емкости для травления, чтобы увеличить скорость процесса. Со свежим горячим FeCl ПП будут полностью вытравливаться за 5 минут при температуре раствора 30-50 градусов. При этом получается лучшее качество края и более равномерная ширина линий изображения. Вместо использования ванн с подогревом можно поместить травильный поддон в емкость большего размера, наполненную горячей водой.

Если вы не используете емкость с подведенным воздухом для бурления раствора, то вам необходимо периодически передвигать плату, чтобы обеспечить равномерное травление.

Лужение

Нанесения олова на поверхность ПП проводят для облегчения пайки. Операция металлизации состоит в осаждении тонкого слоя олова(не более 2 мкм)на поверхности меди.

Подготовка поверхности ПП является очень важной стадией перед началом металлизации. Прежде всего, вам необходимо снять остатки фоторезиста, для чего можно использовать специальные очищающие растворы. Наиболее распространённый раствор для снятия резиста - трёхпроцентный раствор KOH или NaOH, нагретый до 40 - 50 градусов. Плату погружают в этот раствор, и фоторезист через некоторое время отслаивается от медной поверхности. Процедив, раствор можно использовать повторно. Другой рецепт - с помощью метанола (метиловый спирт). Очищение производят следующим образом: удерживая ПП (промытую и высушенную) горизонтально, капните несколько капель метанола на поверхность, затем, немного наклоняя плату, постарайтесь, чтобы капли спирта растеклись по всей поверхности. Подождите около 10 секунд и протрите плату салфеткой, если резист остался, повторите операцию еще раз. Затем протрите поверхность ПП проволочной мочалкой (которая дает намного лучший результат, чем наждачная бумага или абразивные ролики), пока не добьетесь блестящей поверхности, протрите салфеткой, чтобы убрать частички, оставшиеся после мочалки, и немедленно поместите плату в раствор для лужения. Не касайтесь поверхности платы пальцами после очистки. В процессе пайки олово может смачиваться расплавом припоя. Паять лучше мягкими припоями с бескислотными флюсами. Следует обратить внимание, что если между технологическими операциями существует некоторый промежуток времени, то плату необходимо декапировать, чтобы удалить образовавшийся окисел меди: 2-3с в 5% растворе соляной кислоты с последующей промывкой в проточной воде. Достаточно просто осуществлять химическое лужение, для этого плату опускают в водный раствор, содержащий хлорное олово. Выделение олова на поверхности медного покрытия происходит при погружении в такое раствор соли олова, в которой потенциал меди более электроотрицателен, чем материал покрытия. Изменению потенциала в нужном направлении способствует введение в раствор соли олова комплексообразуещей добавки - тиокарбамида (тиомочевины), цианида щелочного металла. Такого типа растворы имеют следующий состав (г/л):

1 2 3 4 5
Двухлористое олово SnCl 2 *2H 2 O 5.5 5-8 4 20 10
Тиокарбомид CS(NH 2) 2 50 35-50 - - -
Серная кислота H 2 SO 4 - 30-40 - - -
KCN - - 50 - -
Винная кислота C 4 H 6 O 6 35 - - - -
NaOH - 6 - - -
Молочнокислый натрий - - - 200 -
Сернокислый алюминий-аммоний (алюмоаммонийные квасцы) - - - - 300
Температура, С o 60-70 50-60 18-25 18-25 18-25

Среди выше перечисленных наиболее распространены растворы 1 и 2. Внимание! Раствор на основе цианистого калия чрезвычайно ядовит!

Иногда в качестве поверхностно-активного вещества для 1 раствора предлагается использование моющего средство "Прогресс" в количестве 1 мл/л. Добавление во 2 раствор 2-3 г/л нитрата висмута приводит к осаждению сплава, содержащего до 1,5% висмута, что улучшает паяемость покрытия и сохраняет ее в течение нескольких месяцев. Для консервации поверхности применяют аэрозольные распылители на основе флюсующих композиций. Нанесенный на поверхность заготовки лак после высыхания образует прочную гладкую пленку, которая препятствует окислению. Одним из популярных таких веществ является "SOLDERLAC" фирмы Cramolin. Последующая пайка проходит прямо по обработанной поверхности без дополнительного удаления лака. В особо ответственных случаях пайки лак можно удалить спиртовым раствором.

Искусственные растворы для лужения ухудшаются с течением времени, особенно при контакте с воздухом. Поэтому если у вас не регулярно бывают большие заказы, то старайтесь приготовить сразу небольшое количество раствора, достаточное для лужения нужного количество ПП, остатки раствора храните в закрытой емкости (идеально использовать одну из бутылок, использующуюся в фотографии, не пропускающую воздух). Также необходимо защищать раствор от загрязнений, которые могут очень ухудшить качество вещества. Тщательно очищайте и высушивайте заготовку перед каждой технологической операцией. У вас должен быть специальный поднос и щипцы для этих целей. После использования инструменты также необходимо хорошо очистить.

Наиболее популярным и простым расплавом для лужения является легкоплавкий сплав - "Розе" (олово - 25%, свинец - 25%, висмут - 50%), температура плавления которого 130 С o . Плату при помощи щипцов помещают под уровень жидкого расплава на 5-10 с, и вынув проверяют все ли медные поверхности равномерно покрыты. При необходимости операцию повторяют. Сразу же после вынимания платы из расплава его удаляют либо с помощью резинового ракеля, либо резким встряхиванием в направлении перпендикулярном плоскости платы, удерживая ее в зажиме. Другим способом удаления остатков сплава "Розе" является ее нагрев в термошкафу и встряхивание. Операция может проводится повторно для достижения монотолщинного покрытия. Для предотвращения окисления горячего расплава в раствор добавляют нитроглицерин, так чтобы его уровень покрывал расплав на 10 мм. После операции плата отмывается от глицерина в проточной воде.

Внимание! Данные операции предполагают работу с установками и материалами, находящимися под действием высокой температуры, поэтому для предотвращения ожега необходимо пользоваться защитными перчатками, очками и фартуками. Операция лужения сплавом олово-свинец протекает аналогично, но более высокая температура расплава ограничивает область применения данного способа в условиях кустарного производства.

Установка, включающая три емкости: травильная ванна с подогревом, ванна с барботажем и проявочный поддон. Как гарантированный минимум: травильная ванна и емкость для споласкивания плат. Для проявки и лужения плат можно использовать ванночки для фотографий.
- Набор поддонов для лужения различного размера
- Гильотина для ПП или маленькие гильотинные ножницы.
- Сверлильный станок, с ножной педалью включения.

Если вы не можете достать промывочную ванну, то для промывки плат можно использовать ручной разбрызгиватель (например, для поливки цветов).

Ну, вот и все. Желаем вам успешно освоить данную методику и получать каждый раз прекрасные результаты.

Технология изготовления печатных плат в домашних условиях
"...и опыт - сын ошибок трудных..."

Итак, процесс изготовления платы начинается с принципиальной схемы будущего устройства. На этом этапе вы определяете не только то, как будут соединены компоненты друг с другом, но и решаете какие именно компоненты подойдут для вашей конструкции. Например: использовать стандартные детали или СМД (которые, к слову, тоже бывают различных размеров). От этого будет зависеть размеры будущей платы.

Далее, определяемся с выбором программного обеспечения, при помощи которого вы будете чертить будущую плату. Если принципиальную схему можно нарисовать от руки, то с рисунком печатной платы так не получиться (особенно, если речь идёт об СМД компонентах). Я использую . Скачал её уже давно, и пользуюсь. Очень хорошая программа, с интуитивно понятным интерфейсом, ничего лишнего. В программе создаём рисунок печатной платы.

Пока никаких секретов не открыл? Так вот: когда рисунок платы уже создан, вы удостоверились в правильности расположения компонентов, следует установить "массу" т.е. заполнить промежутки между дорожками и отверстиями, для этого в программе присутствует специальная функция, которая делает это автоматически (по умолчанию стоит зазор в 0,4 мм). Зачем это нужно? Чтобы на травление (его рассмотрим далее) потребовалось меньше времени, вам будет проще контролировать процесс и ещё это полезно делать из схемотехнических соображений...

Примечание: при проектировании платы старайтесь не делать отверстия диаметром меньше 0,5 мм, если, конечно, у вас нет специального станка для сверления отверстий, но об этом позже...

Отлично! Мы нарисовали рисунок будущей печатной платы, теперь его необходимо распечатать на ЛАЗЕРНОМ принтере (Лут - значит лазерный). Для этого щёлкаем печать. Вышеупомянутая программа создаёт специальный файл, при этом можно выбрать количество копий, их расположение, сделать рамку, указать размер отверстий и отразить зеркально.

Примечание: если делаете двустороннюю печатную плату, то лицевую часть необходимо отразить по горизонтали, а изнаночную оставить как есть. Что касается Sprint - Layout , то лучше сделать это ещё на этапе создания схемы, а не на этапе подготовки файла для печати, так как возникают "глюки" с "массой", она пропадает, местами.

И ещё, лучше распечатать несколько копий, даже если вам нужен только один экземпляр, ведь возможно появятся дефекты на следующих этапах и чтобы не бегать каждый раз к принтеру, сделайте это заранее.

На чём печатать? Для начала, распечатываем на обычном листе бумаги, чтобы в последний раз удостоверится в том, что всё правильно сделано, что все компоненты подходят по размерам. Это также разогреет принтер.

Теперь устанавливаем максимальную плотность тонера, отключаем всякие режимы экономии (кстати, лучше использовать свежий картридж). Берём подложку от самоклеящейся бумаги, лучше от "бархатной" (с ней получается лучший результат, может быть, это из-за того, что она толще) блестящей стороной вставляем в принтер и жмём на "печать". Готово!

Примечание: с этого момента нельзя трогать эту бумагу, только за края, иначе можно заляпать рисунок!

О повторном использовании подложки. Допустим, что вы распечатали рисунок, а он занял только половину листа, не нужно выбрасывать другую половину, на ней тоже можно печатать, НО! по каким-то причинам при повторной печати принтер в 20% случаев "жуёт" бумагу, так что аккуратнее!

Подготавливаем текстолит

Я использую обычный фольгированный стеклотекстолит толщиной в 1 мм, который продаётся в магазине радиодеталей. Так как мы хотим сделать двустороннюю плату, то покупаем двусторонний текстолит. Отрезаем нужный кусочек, не нужно делать запас, он не понадобится. Отрезали. Берём нулевую шкурку и шкурим текстолит до блеска с обоих сторон, если остаются небольшие царапины, то ничего страшного, тонер будет лучше держаться (но без фанатизма!). Далее берём ацетон (спирт) и протираем плату с двух сторон, чтобы обезжирить её. Готово!

Примечание: когда будете шкурить текстолит, обратите внимание на углы платы, очень часто их "недошкуривают" или, что ещё хуже, "перешкуриваю", это когда там совсем не остаётся фольги. После протирания ацетоном плату также нельзя трогать руками, брать можно только за края, лучше пинцетом.

Далее самый ответственный этап: перенос рисунка с бумаги на текстолит. Делается при помощи утюга (лУт - значит утюг). Здесь подойдёт любой. Нагреваем его до 200 градусов (зачастую это максимальная температура утюга, поэтому просто выводим регулятор на максимум и ждём, когда он нагреется).

А вот теперь секретики! Чтобы перенести рисунок печатной платы с бумаги на текстолит, необходимо приложить бумагу к текстолиту нужной стороной, затем придавить утюгом и хорошенько разгладить. Вроде ничего сложного? Но самое трудное это приложить утюг так, чтобы не сметить бумагу, особенно, если платка маленькая и вы делаете её в единственном экземпляре, к тому же утюгом не так то просто орудовать. Есть интересный способ облегчить задачу.

Примечание: мы рассматриваем изготовление двусторонних печатных плат, так что немного о подготовке бумаги. В некоторых источниках советуют делать так: переносим одну сторону, противоположную заклеиваем скотчем или изолентой, травим одну сторону, потом сверлим дырочки, совмещаем рисунок другой стороны, затем опять переносим, заклеиваем, травим. Это занимает много времени, ведь, по сути, вам нужно протравить две платы! Можно ускорить процесс.

Берём две бумажки, на которых находится рисунок с лицевой и изнаночной стороны, совмещаем их. Это лучше делать на оконном стекле или на прозрачном столе с подсветкой. Обратите внимание! в этом случае необходимо отрезать бумажки с запасом, чем больше, тем лучше, но без фанатизма, вполне хватает 1-1,5 см. Скрепляем их степлером с 3-х сторон(клеем нельзя!), получаем конвертик, в который кладём плату и выравниваем её.

Самое интересное. Берём два кусочка текстолита (размер смотрим на рисунке), кладём их фольгированной стороной друг к другу, а между ними помещаем "конвертик" с платой, а края этого бутерброда закрепляем зажимами для бумаги, так чтобы листы текстолита не смещались друг относительно друга.

Примечание: для этих целей лучше выбирать текстолит потоньше, он будет быстрее прогреваться, и сможет деформироваться там, где это необходимо.

Теперь, берём утюг и спокойно прикладываем его к нашему бутерброду, и давим что есть силы, сначала с одной стороны, затем переворачиваем и давим с другой. Для лучшего эффекта рекомендую после первого надавливания совершить несколько круговых движений утюгом, чтобы быть уверенным, что бумага прижалась во всех местах. Гладить нужно не долго, обычно, не больше 1-3 минут на все дела, но точного времени вам никто не скажет, ведь это зависит от размеров платы, количества тонера. Главное не передержать, ведь в этом случае тонер может просто растечься, а если недодержать, то рисунок может полностью не перенестись. Практика, господа, практика!

Затем можно открыть бутерброд и убедиться, что бумага со всех сторон прилипла к текстолиту, т.е. нет пузырьков воздуха. И быстренько несём плату под проточную воду, и охлаждаем (холодной водой разумеется).

Примечание: Если вы использовали подложку от самоклеящейся бумаги, то она под водой зачатую сама отваливается от текстолита и плата спокойно выпадает из конверта. Если же вы использовали подложку от бархатной бумаги (более толстую), то с ней так не получиться. Берём ножницы и срезаем боковые стороны конверта, затем начитаем медленно, держась за краешек бумаги, под струёй воды, снимать бумагу. В результате на бумаге не должно остаться тонера, он весь будет на текстолите.

На данном этапе при возникновении дефектов можно поступить двумя способами. Если дефектов слишком много, лучше взять ацетон, смыть с текстолита тонер и попробовать ещё раз (предварительно повторив процесс очистки текстолита шкуркой).

Пример непоправимого дефекта (в данном случае, я начал сначала):

Если дефектов немного, то можно взять маркер для рисования печатных плат и дополнить изъяны.

Хороший вариант, есть небольшие прорехи в "массе", но их можно закрасить маркером:

Исправленные варианты. Хорошо заметны зелёные закрашенные области:

Отлично, это был самый технологически сложный этап, далее будет проще.

Теперь можно протравить плату, т.е. убрать лишнюю фольгу с текстолита. Суть травления такова: мы помещаем плату в раствор, разъедающий металл, при этом метал находящийся под тонером (под рисунком платы) остаётся невредимым, а тот, что вокруг убирается.

Скажу пару слов о растворе. Травить, на мой взгляд, лучше хлорным железом, оно не дорогое, раствор приготовить очень просто, да и в целом даёт хороший результат. Рецепт простой: 1 часть хлорного железа, 3 части воды и всё! Но встречаются и другие способы травления.

Примечание: добавлять нужно именно воду к железу, а не наоборот, так нужно!

Примечание: существует два вида хлорного железа (которые я встречал): безводное и 6-ти водное. Безводное, как ясно из названия, совершенно сухое, и в ёмкости, в которой оно продаётся всегда много пыли, это не беда. Но при добавлении воды активно растворятся, идёт сильная экзотермическая реакция (раствор нагревается), с выделением какого - то газа (скорее всего это хлор или хлороводород, ну всё одно - пакость редкостная), который НЕЛЬЗЯ ВДЫХАТЬ, рекомендую разводить на воздухе.

А вот 6-ти водное железо уже лучше. Это, по сути уже раствор, вода добавлена, получаются мокрые комочки, которые тоже нужно добавлять в воду, но такой бурной реакции уже нет, раствор нагревается, но не очень быстро и не очень сильно, зато всё безопасно и тихо (окна всё же нужно открыть).

Примечание: советы, которые я привожу здесь не являются единственно правильными, на многих форумах можно встретить людей у которых платы получаются и при другой концентрации, другим сортом хлорного железа и т.д. Я лишь постарался обобщить наиболее популярные советы и личный опыт. Так что, если эти методы не помогли, то попробуйте другой способ и у вас всё получиться!

Раствор приготовили? Отлично! Выбираем ёмкость. Для односторонних этот выбор прост, берём прозрачную (чтобы видеть процесс травления) пластиковую коробочку с крышкой, кладём на дно плату. Но с двусторонними платами всё не так просто. Необходимо, чтобы скорость травления с каждой стороны была примерно одинаковой, иначе может возникнуть ситуация, когда с одна сторона ещё не протравилась, а на другой уже растворяются дорожки. Чтобы этого не произошло, нужно располагать плату вертикально в ёмкости (чтобы она не лежала на дне), тогда раствор вокруг будет однородным и скорость травления будет примерно одинаковой. Следовательно, необходимо взять высокую ёмкость, чтобы плата поместилась в "полный рост". Лучше выбирать узкую прозрачную баночку, чтобы можно было наблюдать процесс травления.

Далее раствор необходимо нагревать (ставим на батарею), это увеличит скорость протекания реакции, и периодически встряхивать, чтобы обеспечивать равномерность травления и чтобы избежать появление осадка на плате.

Примечание: кто-то ставит в микроволновку и греет там, но я вам этого делать не рекомендую, т.к. на одном форуме прочёл, что после такого отравиться едой из этой микроволновки можно. Прямых доказательств нет, но лучше не рисковать!

Примечание: чтобы обеспечить равномерность травления нужно перемешивать раствор (встряхивать ёмкость), но существуют более технологичные способы. Можно присоединить к ёмкости генератор пузырьков (из аквариума) и тогда пузырьки будут перемешивать раствор. Я видел, как люди делают качающиеся ванночки для травления с сервоприводом и микроконтроллером, который осуществляет "взбалтывание" по специальному алгоритму! Здесь я не рассматриваю подробно каждый вариант, ведь в каждом есть свои нюансы и статья тогда бы очень затянулась. Я описал самый простой способ, который отлично подойдёт для первых плат.

Ждём, торопиться не нужно!

Понять, что процесс травления закончился очень просто: между чёрным тонером не останется никаких следов фольги. Когда это произойдёт, можно вынимать плату.

Далее несём её под воду и смываем остатки раствора. Берём спирт или ацетон и смываем тонер, под ним должны остаться дорожки из фольги. Отлично, всё ровно? Нигде нет "недотравленных" мест? Нигде нет "перетравленных" мест? Здорово! Можем двигаться дальше!

Примечание: при появлении дефектов на этом этапе производства ставит перед вами серьёзный выбор: выбросить брак и начать заново или попытаться исправить. Это зависит от того насколько серьёзные возникли дефекты и от того насколько высокие требования вы предъявляете к своей работе.

Следующий этап - лужение платы. Существует два основных способа. Первый - самый простой. Берём флюс для пайки (я использую ЛТИ-120, только не тот, который похож на канифольный лак, оставляющий жуткие пятна поле пайки, а на спиртовой основе, он значительно светлее), обильно смазываем им плату с одной стороны. Берём припой и паяльник с широким жалом и начинаем лудить плату, т.е. покрывать всю фольгу припоем.

Примечание: не стоит слишком долго держать паяльник на дорожках, т.к. текстолит бывает разного качества и от некоторого дорожки отваливаются очень легко, особенно тонкие. Будьте аккуратнее!

На плате в таком случае могут возникнуть "разводы" припоя или неприятные на вид бугорки, бороться с ними лучше при помощи оплётки для выпайки. В тех местах, где необходимо убрать лишний припой проводим ей, убирается весь лишний припой и остаётся ровная поверхность.

Примечание: можно сразу обернуть оплётку вокруг жала и лудить сразу с ней, так может получиться даже проще.

Способ хороший, но чтобы добиться эстетичного вида платы необходим некоторый опыт и сноровка.

Второй способ - посложнее. Вам понадобиться металлическая ёмкость, в которой вы сможете кипятить воду. Наливаем воду в ёмкость, добавляем пару ложек лимонной кислоты и ставим на газ, доводим до кипения. Припой нужно выбирать не простой, а с низкой температурой плавления, например сплав Розе (около 100 градусов по Цельсию). Бросаем несколько шариков на дно и видим, что они расплавились. Теперь бросаем плату на эти шарики, затем берём палочку (лучше деревянную, чтобы не обжечь руки), обматываем её ватой и начинаем тереть плату, разгонять припой по дорожкам, таким образом, можно добиться равномерного распределения припоя по всей плате.

Способ довольно хороший, но более затратный, и необходимо подобрать ёмкость, ведь вам придётся орудовать в ней инструментами. Лучше использовать что - нибудь с невысокими бортиками.

Примечание: вам придётся довольно долго проделывать эту операцию, поэтому лучше открыть окно. С опытом у вас должно получаться быстрее.

Примечание: многие не очень хорошо отзываются о сплаве Розе из - за его хрупкости, но для лужения плат данным способом он подходит очень хорошо.

Примечание: сам я этот способ недолюбливаю, потому что пытался использовать его, когда делал первую плату и хорошо помню, как было неудобно "варить" эту плату в консервной банке без инструментов....Оо это было ужасно! Но теперь...

Оба способа имеют свои достоинства и недостатки, выбор зависит только от вас и ваших возможностей, желания, умения.

Примечание: далее я рекомендую прозвонить плату мультиметром, чтобы убедиться, что нигде нет пересечения дорожек, которые не должны пересекаться, что нигде нет случайных "сопелек" или ещё какой неожиданности. В случае обнаружения проблемы, берём паяльник и убираем лишний припой, если не помогает, то используем канцелярский нож и аккуратно разъединяем необходимые места. Это может означать, что плата недотравилась в некоторых местах, но ничего страшного.

Для этого используем маленькую дрель и сверло. Сейчас продаются специальные свёрла для печатных плат с особой заточкой и особыми канавками на сверле. Сначала я использовал обычное сверло по металлу толщиной 0,6 мм, затем перешёл на специальное и результат очень хороший. Во первых, даже с моей бюджетной дрелью без проблем сверлится любой текстолит, практически без усилий. Сверло само "вгрызается" в него и тянет за собой инструмент. Во - вторых, оставляет аккуратное входное и выходное отверстие, без заусенцев, в отличие от стандартного сверла, которое буквально "рвёт" текстолит. В - третьих, это сверло почти не скользит, т.е. нужно только с первого раза попасть в нужное место и оно уже никуда не денется. Чудо, а не инструмент! Но и стоит оно немного дороже обычного сверла.

Примечание: чтобы "сразу попасть в нужное место" лучше использовать шило или специальный инструмент для кернения, только не делайте слишком глубокие зарубки, это может направить сверло не в ту сторону. Ещё: у этого сверла есть один недостаток - оно легко ломается, поэтому лучше использовать специальный станок, чтобы сверлить отверстия или держать дрель строго вертикально. Поверьте, очень легко ломается! Особенно, когда нужно просверлить отверстие в 0,3 мм или 0,2 мм, но это уже ювелирная работа.

Готово! Вот собственно и всё! Сквозные отверстия пропаиваем тонкими проводками и получаются аккуратные полусферы на плате, смотрится очень даже ничего. Теперь нужно только припаять все компоненты схемы и убедиться, что она работает, но это тема для других статей. А вот, что получилось у меня:

На этом всё. Ещё раз хочу подчеркнуть, что здесь я лишь постарался обобщить все материалы, которые мне удалось найти о ЛУТе, и свой опыт. Получилось немного затянуто, но в каждом деле есть много нюансов, которые необходимо учитывать, для достижения наилучшего результата. Последний совет, который я могу вам дать: нужно пробовать, пытаться делать платы, ведь мастерство приходит с опытом. И в конце ещё раз приведу эпиграф: "...и опыт - сын ОШИБОК трудных..."

Если остались вопросы, то можно оставлять их комментариях. Также буду благодарен за конструктивную критику.

Кажется, для оверклокеров наступают трудные времена. Фирмы изготовители, как сговорившись, начали ограничивать возможность разгона своих изделий. Не знаю к добру это или к худу. Я не являюсь принципиальным противником оверклокинга, но отношусь к нему прагматически. Если от него есть какая-то польза – ради Бога. Но на своем опыте я убедился, что оверклокинг сам по себе мало что дает. Ну, разогнал я свой процессор на 40%, немножко разогнал видеокарту и... не увидел практически никаких отличий в реальной работе, за исключением температуры процессора. Было 38, стало 52, не знаю чего, но только не градусов. Пожал плечами и вернул все на место. Правда, у меня и без разгона достаточно мощный компьютер. Так, что оверклокинг, похоже, дает только моральное удовлетворение. Да и это спорно. Собственно, в чем заслуга оверклокера? В том, что ему достался хорошо гонимый процессор или повезло с конкретным экземпляром видеокарты?

Но всегда были, есть и будут люди, которым недостаточно купить хорошую вещь и просто пользоваться ей. Так что антиоверклокерские меры Intel, AMD, ATI и Nvidia могут помочь направить энергию людей, чувствующих зуд в руках, в более перспективное русло.

реклама

На мой взгляд, гораздо полезнее и с практической точки зрения и для получения морального удовлетворения моддинг. Но не простое украшательство, а изменения и дополнения, повышающие функциональность и удобство работы. Вот так, навскидку, можно предложить, например, многоканальный электронный термометр, для оперативного и независимого от произвола биосописателей контроля температуры во всех критичных точках, встроенный 6-8 канальный усилитель для пассивных колонок (ух, достало меня хрипение китайской дешевки!), устройства для аппаратного переключения винчестеров (полезно для размещения на одном компьютере нескольких конфликтующих между собой операционных систем и защиты архива от вирусов), электронная система управления водяным охлаждением и т.п.

Здесь хотелось бы отметить статьи "Все, что вы хотели сделать руками, но боялись спросить..." и "Индикатор загрузки HDD" . Их можно рассматривать как первых ласточек этого, на мой взгляд, чрезвычайно перспективного подхода.

Еще больше тех, кто мог бы повторить готовую разработку. Проблема в технологии. Изготовление качественных печатных плат в домашних условиях достаточно проблематично, а заказывать их в специализированных фирмах дорого и долго. Да и часть кайфа теряется.

Выбор носителя

реклама

Как выяснилось, в качестве носителя изображения можно использовать только специальную пленку для лазерных принтеров. Любой тип бумаги непригоден. Пленка должна быть тонкой и с бумажной подложкой. Дорогие типы пленок имеют специальный подслой для прочного закрепления изображения и тоже непригодны. В последнее время я пользуюсь пленкой фирмы EMTEK, потому что пленка фирмы Xerox у нас исчезла из продажи, но Xerox лучше. Она меньше коробится при нагревании. Тонер лучше использовать легкоплавкий. Вначале я пользовался родным тонером картриджа Samsung ML-1250. Он обеспечивает очень хорошее плотное изображение. После перезаправки картриджа тонером Xerox 8T, как мне посоветовали в сервис-центре, изображение стало хуже и платы вообще перестали получаться, что и подвигло меня на исследования. Но, усовершенствовав технологию, я добился отличных результатов и с этим тонером.

Подготовка заготовки

Для получения хорошего результата подготовка поверхности заготовки имеет решающее значение. Поверхность должна быть идеально чистой и ровной. Протирка спиртом, ацетоном или любыми чистящими средствами недостаточна. Процедура подготовки поверхности следующая. Вначале чистим поверхность от грубых загрязнений порошком Пемолюкс. Промываем заготовку ватным тампоном, не касаясь поверхности пальцами. Помещаем ее в раствор хлорного железа на 10-15 сек. При этом стравливается тонкий верхний слой вместе со всеми загрязнениями. Промываем заготовку под струей воды ватным тампоном. Стряхиваем воду и сушим, не прикасаясь к поверхности ничем. Если все сделано правильно, должна получиться темно-розовая матовая поверхность, возможно с небольшими разводами. Главное, не должно быть блестящих участков. Если они есть, процедуру повторить.

Накатывание рисунка

Обычно рекомендуют положить заготовку, на нее носитель и проглаживать это утюгом. В идеальных условиях это возможно и пройдет, но реально как поверхность заготовки, так и подошва утюга не вполне ровны и равномерного прижатия горячего носителя к поверхности заготовки получить не удастся. Кроме того, процесс невозможно контролировать и приходится надеяться на удачу. Поэтому я закрепляю утюг подошвой вверх, кладу на него чистый лист бумаги, чтобы случайно не повредить подошву, а на него заготовку. Утюг должен быть разогрет до температуры, при которой бумага еще не желтеет, но и не менее. Сверху укладываю пленку с нанесенным рисунком и прикатываю ее специальным приспособлением, сделанным из прижимного ролика магнитофона. Прикатывание нужно начинать с центра, выдавливая воздух из-под пленки в стороны. После того как пленка плотно приляжет к поверхности заготовки, увеличиваем усилие прикатки и тщательно проходимся по всей плате. Снимаем заготовку с утюга и остужаем ее. Снимать пленку с заготовки можно только после полного остывания. Если все сделано правильно, весь тонер перейдет на плату, а на пленке останутся слабые розоватые следы. Повторно пленку использовать нельзя.

Закрепление рисунка

Несмотря на то, что внешне рисунок выглядит почти идеально, сразу травить плату нельзя. Слой тонера получается пористым. Если сразу протравить плату, а потом посмотреть получившиеся проводники под микроскопом или сильной лупой, отчетливо видны подтравившиеся точки, а края проводника получаются неровными. Чтобы избежать этого, рисунок на плате покрываем 10% раствором канифоли в спирте и снова укладываем на утюг. Температура должна быть выставлена максимальной, так чтобы бумага желтела и дымилась. Выдерживаем 10 минут. При этом тонер сплавляется с канифолью, образуя очень прочный, однородный блестящий слой. Остужаем плату и проявляем рисунок тампоном со спиртом. Канифоль, сплавленная с тонером, в спирте не растворяется, а остатки неиспарившейся канифоли с пробельных участков удаляются без особого труда. При протирке можно прилагать значительные усилия. Сплав тонера и канифоли держится очень прочно, даже шкуркой удалить его трудно. Если же где-то рисунок будет поврежден, значит такая у него судьба. Лучше обнаружить плохо прикатанный проводник на этапе протирки, чем после травления. При неудаче, рисунок смываем ацетоном и повторяем все с самого начала. Это бывает редко.

Травление платы

Травление производим в растворе хлорного железа. Раствор можно подогреть до температуры 50-60 градусов. Никаких особенностей нет. После травления плату промываем водой и смываем защитное покрытие ацетоном.

Достигнутые результаты

По вышеописанной технологии изготовлялись односторонние печатные платы размером до 100х150 мм. Технология позволяет проводить один проводник между ножками микросхем в корпусах DIP, поэтому потребность в двусторонних платах у меня пока не возникала. Задумка о модификации технологии для двусторонних плат у меня есть, но пока не пробовал. Весь цикл изготовления платы занимает около двух часов, без учета времени потраченного на разводку. Плата получается с первого раза в 9 случаях из 10.

P.S. Это моя первая статья для Вас. Если эта тематика представляет для Вас интерес, пришлю еще. У меня много материалов.

С уважением, С. Веремеенко.

Как подготовить к производству плату, сделанную в Eagle

Подготовка к производству состоит из 2 этапов: проверка технологических ограничений (DRC) и генерация файлов в формате Gerber

DRC

У каждого производителя печатных плат существуют технологические ограничения на минимальную ширину дорожек, зазоры между дорожками, диаметры отверстий, и т.п. Если плата не соответствует этим ограничениям, производитель отказывается принимать плату к производству.

При создании файла печатной платы устанавливаются технологические ограничения по умолчанию из файла default.dru из каталога dru. Как правило, эти ограничения не соответствуют ограничениям реальных производителей, поэтому их нужно изменить. Можно настроить ограничения непосредственно перед генерацией файлов Gerber, но лучше сделать это сразу после создания файла платы. Для настройки ограничений нажимаем кнопку DRC

Зазоры

Переходим на вкладку Clearance, где задаются зазоры между проводниками. Видим 2 секции: Different signals и Same signals . Different signals - определяет зазоры между элементами, принадлежащим разным сигналам. Same signals - определяет зазоры между элементами, принадлежащим одному и тому же сигналу. При перемещении между полями ввода картинка меняется, показывая смысл вводимого значения. Размеры можно задавать в миллиметрах (mm) или в тысячных долях дюйма (mil, 0.0254 мм).

Расстояния

На вкладке Distance определяются минимальные расстояния между медью и краем платы (Copper/Dimension ) и между краями отверстий (Drill/Hole )

Минимальные размеры

На вкладке Sizes для двухсторонних плат имеют смысл 2 параметра: Minimum Width - минимальная ширина проводника и Minimum Drill - минимальный диаметр отверстия.

Пояски

На вкладке Restring задаются размеры поясков вокруг переходных отверстий и контактных полщадок выводных компонентов. Ширина пояска задается в процентах от диаметра отверстия, при этом можно задать ограничение на минимальную и максимальную ширину. Для двухсторонних плат имеют смысл параметры Pads/Top , Pads/Bottom (контактные площадки на верхнем и нижнем слое) и Vias/Outer (переходные отверстия).

Маски

На вкладке Masks задаются зазоры от края контактной площадки до паяльной маски (Stop ) и паяльной пасты (Cream ). Зазоры задаются в процентах меньшего размера площадки, при этом можно задать ограничение на минимальный и максимальный зазор. Если производитель плат не указывает специальных требований, можно оставить на этой вкладке значения по умолчанию.

Параметр Limit определяет минимальный диаметр переходного отверстия, которое не будет закрыто маской. Например если узазать 0.6mm то переходные отверстия диаметром 0.6мм и менее будут закрыты маской.

Запуск проверки

После установки ограничений, переходим на вкладку File . Можно сохранить установки в файл, нажав кнопку Save As... . В дальнейшем для других плат можно быстро загрузить установки (Load... ).

Нажатием кнопки Apply установленные технологические ограничения применяются к файлу печатной платы. Это влияет на слои tStop, bStop, tCream, bCream . Также для переходных отверстий и контактных площадок выводных компонентов будет изменен размер, чтобы удовлетворить ограничениям, заданным на вкладке Restring .

Нажатие кнопки Check запускает процесс контроля ограничений. Если плата удовлетворяет всем ограничениям, в строке статуса программы появится сообщение No errors . Если плата не проходит контроль, появляется окно DRC Errors

В окне содержится список ошибок DRC, с указанием типа ошибки и слоя. При двойном щелчке на строке область платы с ошибкой будет показана в центре главного окна. Типы ошибок:

слишком маленький зазор

слишком маленький диаметр отверстия

пересечение дорожек с разными сигналами

фольга слишком близко к краю платы

После исправления ошибок нужно снова запустить контроль, и повторять эту процедуру до тех пор, пока не будут устранены все ошибки. Теперь плата готова к выводу в файлы Gerber.

Генерация файлов в формате Gerber

Из меню File выбрать CAM Processor . Появится окно CAM Processor .

Совокупность параметров генерации файлов называется заданием. Задание состоит из нескольких секций. Секция определяет параметры вывода одного файла. По умолчанию в поставке Eagle имеется задание gerb274x.cam, но оно иммет 2 недостатка. Во-первых, нижние слои выводятся в зеркальном отображении, во-вторых не выводится файл сверловки (для генерации сверловки нужно будет выполнить еще одно задание). Поэтому рассмотрим создание задания "с нуля".

Нам нужно создать 7 файлов: границы платы, медь сверху и снизу, шелкография сверху, паяльная маска сверху и снизу и сверловка.

Начнем с границ платы. В поле Section вводим имя секции. Проверяем, что в группе Style установлены только pos. Coord , Optimize и Fill pads . Из списка Device выбираем GERBER_RS274X . В поле ввода File вводится имя выходного файла. Удобно поместить файлы в отдельный каталог, поэтому в этом поле введем %P/gerber/%N.Edge.grb . Это означает каталог, в котором расположен исходный файл платы, подкаталог gerber , исходное имя файла платы (без расширения .brd ) с добавленным в конце .Edge.grb . Обратите внимание, что подкаталоги не создаются автоматически, поэтому перед генерацией файлов нужно будет создать подкалог gerber в каталоге проекта. В полях Offset вводим 0. В списке слоев выбираем только слой Dimension . На этом создание секции закончено.

Для создания новой секции нажимаем Add . В окне появляется новая вкладка. Устанавливаем параметры секции как описано выше, повторяем процесс для всех секций. Разумеется, для каждой секции должен быть выбран свой набор слоев:

    медь сверху - Top, Pads, Vias

    медь снизу - Bottom, Pads, Vias

    шелкография сверху - tPlace, tDocu, tNames

    маска сверху - tStop

    маска снизу - bStop

    сверловка - Drill, Holes

и имя файла, например:

    медь сверху - %P/gerber/%N.TopCopper.grb

    медь снизу - %P/gerber/%N.BottomCopper.grb

    шелкография сверху - %P/gerber/%N.TopSilk.grb

    маска сверху - %P/gerber/%N.TopMask.grb

    маска снизу - %P/gerber/%N.BottomMask.grb

    сверловка - %P/gerber/%N.Drill.xln

Для файла сверловки устройство вывода (Device ) должно быть EXCELLON , а не GERBER_RS274X

Следует иметь в виду, что некоторые производители плат принимают только файлы с именами в формате 8.3, то есть не более 8 символов в имени файла, не более 3 символов в расширении. Это следует учитывать при задании имен файлов.

Получаем следующее:

Затем открываем файл платы (File => Open => Board ). Убедитесь, что файл платы был сохранен! Нажимаем Process Job - и получаем набор файлов, которые можно отправить производителю плат. Обратите внимание - кроме собственно Gerber файлов будут также сгенерированы информационные файлы (с раширениями .gpi или .dri ) - их отправлять не нужно.

Можно также вывести файлы только из отдельных секций, выбирая нужную вкладку и нажимая Process Section .

Перед отправкой файлов производителю плат полезно просмотреть то, что получилось, с помощью программы просмотра Gerber. Например, ViewMate для Windows или для Linux. Еще бывает полезно сохранить плату в PDF (в редакторе платы File->Print->кнопка PDF) и закинуть этот файл производителю вместе с герберами. А то они ведь тоже люди, это поможет им не ошибиться.

Технологические операции, которые необходимо выполнять при работе с фоторезистом СПФ-ВЩ

1. Подготовка поверхности.
а) зачистка шлифованным порошком («Маршалит»), размер М-40, промывка водой
б) декапирование 10% раствором серной кислоты (10-20 сек), промывка водой
в) сушка при T=80-90 гр.Ц.
г) проверка – если в течение 30 сек. на поверхности остается сплошная пленка – подложка готова к работе,
если нет – повторить все сначала.

2. Нанесение фоторезиста.
Нанесение фоторезиста производится на ламинаторе с Tвалов =80 гр.Ц. (см. инструкцию работы на ламинаторе).
С этой целью горячая подложка (после сушильного шкафа) одновременно с плёнкой из рулона СПФ направляется в зазор между валов, причем полиэтиленовая (матовая) плёнка должна быть направлена к медной стороне поверхности. После прижима пленки к подложке начинается движение валов, при этом полиэтиленовая пленка снимается, а слой фоторезиста накатывается на подложку. Лавсановая защитная пленка остается сверху. После этого пленка СПФ обрезается со всех сторон по размеру подложки и выдерживается при комнатной температуре в течение 30 минут. Допускается выдержка в течение от 30 минут до 2 суток в темноте при комнатной температуре.

3. Экспонирование.

Экспонирование через фотошаблон производят на установках СКЦИ или И-1 с УФ-лампами типа ДРКТ-3000 или ЛУФ-30 с вакуумным разрежением 0,7-0,9 кг/см2. Время экспонирования (для получения рисунка) регламентируется самой установкой и подбирается экспериментально. Шаблон должен быть хорошо прижат к подложке! После экспонирования заготовка выдерживается в течение 30 минут (допускается до 2 часов).

4. Проявление.
После экспонирования проводится процесс проявления рисунка. С этой целью с поверхности подложки снимается верхний защитный слой – лавсановая пленка. После этого заготовка опускается в раствор кальцинированной соды (2%) при T=35 гр.Ц. Через 10 секунд начинают процесс снятия незасвеченной части фоторезиста с помощью поролонового тампона. Время проявления подбирают опытным путем.
Затем подложку вынимают из проявителя, промывают водой, декапируют (10 сек.) 10%-ным раствором H2SO4 (серная кислота), снова водой и сушат в шкафу при T=60 гр.Ц.
Полученный рисунок не должен отслаиваться.

5. Полученный рисунок.
Полученный рисунок (слой фоторезиста) устойчив для травления в:
- хлорном железе
- соляной кислоте
- сернокислой меди
- царской водке (после дополнительного задубливания)
и др. растворах

6. Срок годности фоторезиста СПФ-ВЩ.
Срок годности СПФ-ВЩ 12 месяцев. Хранение осуществляется в темном месте при температуре от 5 до 25 гр. Ц. в вертикальном положении, завернутым в черную бумагу.

В этой заметке я разберу популярные способы для создания печатных плат самостоятельно в домашних условиях: ЛУТ, фоторезист, ручное рисование. А также с помощью каких программ лучше всего рисовать ПП.

Когда-то электронные устройства монтировали с помощью навесного монтажа. Сейчас так собирают разве что ламповые аудиоусилители. В массовом ходу печатный монтаж, который преквратился уже давно в настоящую отрасль со своими хитростями, особенностями и технологиями. А хитростей там немало. Особенно при создании ПП для высокочастотных устройств. (Думаю, что сделаю как-нибудь обзор литературы и особенностей проектирования расположения проводников ПП)

Общий принцип создания печатных плат (ПП) заключается в том, чтобы на поверность из непроводящего ток материала нанести дорожки, которые этот самый ток проводят. Дорожки соединяют радиодетали согласно требуемой схеме. На выходе получается электронное устройство, которое можно трясти, носить, иногда даже мочить без боязни его повредить.

В общих чертах технология создания печатной платы в домашних условиях состоит из нескольких шагов:

  1. Выбрать подходящий фольгированный стеклотекстолит. Почему текстолит? Его проще достать. Да и подешевле получается. Зачастую для любительского устройства этого достаточно.
  2. Нанести на текстолит рисунок печатной платы
  3. Стравить лишнюю фольгу. Т.е. убрать лишнюю фольгу с участков платы, на которых нет рисунка проводников.
  4. Просверлить отверстия под выводы компонентов. Если требуется просверлить отверстия под компоненты с выводами. Для чип компонентов этого очевидно не требуется.
  5. Залудить токоведущие дорожки
  6. Нанести паяльную маску. Опционально, если хочешь внешне приблизить свою плату к заводским.

Другой вариант -- это просто заказать свлю плату на заводе. Сейчас множество компаний предоставляют услуги по производсту печатных плат. Получишь отличную заводскую печатную плату. Различаться с любительской они будут не только наличием паяльной маски, но и многими другими параметрами. Например, если у тебя двусторонняя ПП, то на плату бедт присутствовать металлизация отверстий. Можно выбирать цвет паяльной маски и т.д. Преимуществ море, только успевай отслюнявливать деньги!

Шаг 0

Прежде, чем изготавливать ПП, она должна быть где-то нарисована. Можно по старинке нарисовать её на миллиметровой бумаге и потом переносить рисунок на заготовку. А можно воспользоваться одной из многочисленных программ для создания печатных плат. Программы эти называются общим словом САПР (CAD). Из доступных радиолюбителю можно назвать DeepTrace (беспл. версия), Sprint Layout, Eagle (можно конечно найти и специализированные типа Altium Designer)

С помощью этих программ можно не только нарисовать ПП, но и подготовить её к производству в заводских условиях. Вдруг захочется заказать десяток платок? А если не захочется, то такую ПП удобно распечатать и с помощью ЛУТ или фоторезиста изготовить самостоятельно. Но об этом ниже.

Шаг 1

Итак, заготовку для ПП условно можно разделить на две части: непроводящая основа и проводящее покрытие.

Заготовки для ПП бывают разные, но чаще всего они различаются материалом непроводящего слоя. Можно встретить такую подложку из гетинакса, стеклотекстолита, гибкая основа из полимеров, композиции целлюлозной бумаги и стеклоткани с эпоксидной смолой, даже металлическая основа бывает. Все эти материаллы разлиаются своими физическими и механическими свойствами. И на производстве материал для ПП выбирается исходя из экономических соображений и технических условий.

Для домашних ПП я рекомендую фольгированный стеклотекстолит. Легко достать и цена приемлемая. Гетинаксы наверно дешевле, но лично я их терпеть не могу. Если ты разбирал хоть одно массовое китайское устройство, то наверно видел из чего там сделаны ПП? Они ломкие, а при пайке воняют. Пусть китайцы это нюхают.

В зависимости от собираемого устройства и условий его эксплуатации можно выбрать подходящий текстолит: односторонний, двусторонний, с разной толщиной фольги (18 мкм, 35 мкм и т.д. и т.п.

Шаг 2

Для нанесения рисунка ПП на фольгированную основу радиолюбители отработали множество методов. Среди них два самых популярных в нынешнее время: ЛУТ и фоторезист. ЛУТ -- это сокращение от "лезерно утюжная технология". Как и следует из названия потребюутся лазерный принтер, утюг и глянцевая фотобумага.

ЛУТ

На фотобумагу печатается рисунок в отзеракленном виде. Затем он накладывается на фольгированный текстолит. И хорошенько прогревается утюгом. Под воздействием температуры тонер с глянцевой фотобумаги прилипает к медной фольге. После прогрева плата отмачивается в воде и бумага аккуратно убирается.

На фото выше как раз плата после травления. Черный цвет токоведущих дорожек из-за того, что они еще покрыты затвердевшим тонером от принтера.

Фоторезист

Это более сложная технология . Но и результат с его помощью можно получить более качественный: без протравов, более тонкие дорожки и т.д. Процесс похож на ЛУТ, но рисунок ПП печатается на прозрачной пленке. Таким образом получается шаблон, который можно использовать многократно. Затем на текстолит наносится "фоторезист" -- чувствительная к ультрафиолету пленка или жидкость (фоторезист бывает разным).

Затем поверх фоторезиста прочно закрепляется фотошаблон с рисунком ПП и затем этот бутерброд облучается ультрафиолетовй лампой четко отмеренное время. Надо сказать, что рисунок ПП на фотошаблоне печатается инвертированным: дорожки прозрачные, а пустоты темные. Делается это для того, чтобы при засветке фоторезиста незакрытые шаблоном участки фоторезиста среагировали на ультрафиолет и стали нерастворимыми.

После засветки (или экспонирования, как это называют спецы) плата и "проявляется" -- засвеченные участки становятся тёмными, незасвеченные -- светлыми, так как там фоторезист просто растворился в проявителе (обычная кальцинированная сода). Затем плата травится в растворе, а после фоторезист удаляется, к примеру, ацетоном.

Виды фоторезиста

В природе обитает несколько видов фоторезиста: жидкий, самоклеющаяся плёнка, позитивный, негативный. В чем разница и как выбрать себе подходящий? На мой взгляд в любительском применении особой разницы нет. Тут уж как ты наловчишься, тот вид применять и будешь. Я выделил бы только два основных критерия: цена и на сколько удобно лично мне пользоваться тем или иным фоторезистом.

Шаг 3

Травление заготовки ПП с нанесённым рисунком. Растворить незащищенную часть фолги с ПП можно множеством способов: травление в персульфате аммония, хлорном железе, . Мне нравится последний способ: быстро, чисто, дешево.

Помещаем заготовку в раствор для травления, ждем минут 10, вынимаем, промываем, зачищаем дорожки на плате и переходим к следующему этапу.

Шаг 4

Плату можно залудить либо сплавом Розе, либо Вуда, лубо просто покрыть дорожки флюсом и пройтись по ним паяльником с припоем. Сплавы Розе и Вуда -- многокомпонентные легкоплавкие сплавы. А сплав Вуда ещё и кадмий содержит. Так то в домашних условиях проводить такие работы следует под вытяжкой с фильтром. Идеально иметь простенький дымоуловитель. Ты же хочешь жить долго и счастливо?:=)

Шаг 6

Пятый шаг я пропущу, там всё понятно. А вот нанесение паяльной маски довольно интересный и не самый простой этап. Так что давай изучим его подробней.

Паяльная маска используется в процессе создания ПП для того, чтобы защитить дорожки платы от окислений, влаги, флюсов при монтаже компонентов, а также, чтобы облегчить сам монтаж. Особенно, когда используются SMD-компоненты.

Обычно, чтобы защитить дорожки ПП без маски от хим. и мех воздействий матерые радиолюбители такие дорожки покрывают слоем припоя. После лужения такая плата часто выглядит как-то не очень красиво. Но хуже, что в процессе лужения можно перегреть дорожки или повесить между ними "соплю". В первом случае проводник отвалится, а во втором придётся удалять такие нежданные "сопли", чтобы устранить короткое замыкание. Еще одним минусом является увеличение ёмкости между такими проводниками.

Прежде всего: паяльная маска довольно токсична. Все работы следует проводить в хорошо проветриваемом помещении (а лучше под вытяжкой), а также избегать попадания маски на кожу, слизистые оболочки и в глаза.

Не могу сказать, что процесс нанесения маски довольно сложный, но все же требует большого числа шагов. После обдумывания решил, что дам ссылку на более-менее подробное описание нанесения паяльной маски, так как нет сейчас возможности самостоятельно продемонстрировать процесс.

Творите, ребята, это интересно =) Создания ПП в наше время сродни не просто ремеслу, а целому искусству!