План электроснабжения цеха. Электроснабжение механического цеха серийного производства

Электрические сети служат для передачи и распределения электрической энергии к цеховым потребителям промышленных предприятий. Потребители энергии присоединяются через внутрицеховые подстанции и распределительные устройства при помощи защитных и пусковых аппаратов.

Электрические сети промышленных предприятий выполняются внутренними (цеховыми) и наружными. Наружные сети напряжения до 1 кВ имеют весьма ограниченное распространение, т. к. на современных промышленных предприятиях электропитание цеховых нагрузок производится от внутрицеховых или пристроенных трансформаторных подстанций.

Выбор электрических сетей радиальные схемы питания характеризуются тем, что от источника питания, например от трансформаторной подстанции, отходят линии, питающих непосредственно мощные электроприёмники или отдельные распределительные пункты, от которых самостоятельными линиями питаются более мелкие электроприёмники.

Радиальные схемы обеспечивают высокую надежность питания отдельных потребителей, т. к. аварии локализуются отключением автоматического выключателя поврежденной линии и не затрагивают другие линии.

Все потребители могут потерять питание только при повреждении на сборных шинах КТП, что мало вероятно. В следствии достаточно надёжной конструкции шкафов этих КТП.

Магистральные схемы питания находят широкое применение не только для питания многих электроприёмников одного технологического агрегата, но также большого числа сравнения мелких приёмников, не связанных единым технологическим процессом.

Магистральные схемы позволяют отказаться от применения громоздкого и дорогого распределительного устройства или щита. В этом случае возможно применение схемы блока трансформатор-магистраль, где в качестве питающей линии применяются токопроводы (шинопроводы), изготовляемые промышленностью. Магистральные схемы, выполненные шинопроводами, обеспечивают высокую надёжность, гибкость и универсальность цеховых сетей, что позволяет технологам перемещать оборудование внутри цеха без существенного монтажа электрических сетей.

В связи с равномерностью распределения потребителей внутри ремонтно-механического цеха, а также низкой стоимости и удобстве в эксплутации выбирается магистральная схема питания.

Расположение основного оборудования показано на схеме (рис.1).

Существуют следующие схемы электроснабжения: радиальные, магистральные и смешанные.

Радиальная схема проста, надёжна и в большинстве случаев позволяет использовать упрощенные схемы первичных коммутаций подстанций нижнего уровня. При аварийном отключении радиальной схемы на потребителях это не отразится. Недостатками радиальной схемы является высокая стоимость по сравнению с магистральной схемой и большой расход коммутационной аппаратуры.

Преимуществами магистральной схемы (рисунок 2.1) являются лучшая загрузка магистральной линии по току, меньшее число коммутационных аппаратов, уменьшенный расход цветных металлов и затрат на выполнение электрической схемы. Недостатком такой схемы является сложная схема первичной коммутации подстанций нижнего уровня и низкая надёжность.

Смешанная схема сочетает в себе элементы радиальной и магистральной схемы.

Наиболее приемлемой схемой электроснабжения в данном случае является смешанная схема (рисунок 2.2), так как она сочетает в себе преимущества радиальной и магистральной схемы и соответствует требованиям, предъявляемым к надёжности электроснабжения и условиям окружающей среды.

Рисунок 2.1 Магистральная схема питания электроприёмников

Рисунок 2.2 Схема смешанного питания потребителей в системе внутреннего электроснабжения цеха

Описание выбранной схемы электроснабжения

Электроснабжение цеха осуществляется от цеховой трансформаторной подстанции, расположенной на территории цеха, которая получает питание от главной понизительной подстанции. От цеховой трансформаторной подстанции электроэнергия поступает на распределительные шкафы. Распределительные шкафы, в свою очередь, питают силовое оборудование цеха: от ШР1 получает питание закалочная установка 1-100/3 общей мощностью 86 кВт; от ШР2- трубоотрезной станок и станок точильный двухсторонний общей мощностью 26,3 кВт; от ШР3 - токарно-винторезный станок 1М63М и балансировочный станок общей мощностью 59,96 кВт; от ШР4 - шлифмашинка пневматическая, пресс гидравлический, поперечно- строгальный станок общей мощностью 57,76кВт.

Данная схема содержит: масляные выключатели, шинопроводы, разъединители, разрядники, силовые трансформаторы, предохранители.

Масляные выключатели предназначены, для замыкания и размыкания цепи под нагрузкой и для гашения электрической дуги.

Выключатели предназначены для замыкания и размыкания цепи.

Разъединителями называют электрические аппараты, предназначенные для создания видимых разрывов электрических цепей с целью обеспечения безопасности людей, осматривающих и ремонтирующих оборудование электрических установок высокого напряжения или линии электропередачи.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

1 Общая характеристика механического цеха, виды установленного оборудования

2 Расчет электрического освещения, выбор источников света и светильников

3 Расчёт мощности и выбор вентиляционной установки

4 Выбор и расчёт грузоподъёмного механизма

5 Разработка схемы управления электропривода грузоподъемного механизма

6 Расчет мощности и выбор электродвигателя главного привода компрессорной установки

7 Расчет и построение естественной механической характеристики АД

8 Расчет и построение графиков переходного процесса при пуске электродвигателя

9 Разработка электрической принципиальной схемы управления компрессорной установки

10 Расчет и выбор аппаратуры управления и защиты для схемы и управления

11 Охрана труда и защита окружающей среды.

12 Заключение

13 Список литературы

Введение

Электрификация обеспечивает выполнение задачи широкой комплексной механизации и автоматизации производственных процессов, что позволяет усилить темпы роста производительности труда, улучшить качества продукции и производительности труда. На базе, используемой электрической энергии, ведется техническое перевооружение промышленности, внедрение новых технологических процессов и осуществление коренных преобразований в организации производства и управления ими. Поэтому, в современной технологии и оборудовании промышленности предприятий велика роль электрооборудования, то есть совокупности электрических машин, аппаратов, приборов и устройств, посредством которых производится преобразование электрической энергии в другие виды энергии, и обеспечивать автоматизацию технологических процессов. Первостепенное значение для автоматизации производства имеет многодвигательный электропривод и средства электрического управления. Развитие электропривода идет по пути упрощения механических передач и приближения электродвигателя к рабочим органам машины и механизмов, а также возрастающего применения электрической регулировки скорости приводов. Широко внедряются тиристорные преобразовательные устройства. Применение тиристорных преобразователей не только позволило создать высокоэкономичное регулирование электропривода постоянного тока, но и открыло большие возможности для использования частотного регулирования двигателя переменного тока, в первую очередь наиболее простых и надежных синхронных двигателей с короткозамкнутым ротором.

Металлорежущие станки являются основным видом заводского оборудования, предназначенным для производства современных машин, приборов, инструментов и других изделий, поэтому количество и качество металлорежущих станков, их техническая оснащенность в значительной степени характеризует производительную мощь страны.

1. Общая характеристика проектируемого объекта, виды установленного оборудования

Основной чертой технологического процесса, проходящего в механическом цехе, является для выполнения различных операций по обслуживанию, ремонту электротермического и станочного оборудования. Данный цех полностью удовлетворяет требованиям, предъявляемым как к производству изделий, так и требованиям электроснабжения потребителей, расположенных в данном цехе.

В механическом цехе находятся следующие станки и агрегаты:

· Сварочные автоматы 4 шт.

· Вентиляторы 4 шт.

· Компрессоры 2 шт.

· Алмазно-расточные станки 4 шт.

· Горизонтально расточные 4 шт.

· Продольно строгальные станки 2 шт.

· Расточные станки 6 шт.

· Радиально - сверлийные станки 4 шт.

· Вертикально сверлийные станки 3 шт.

· Токарно-револьверные станки 8 шт.

· Кран-балка 1 шт.

· Заточные станки 2 шт.

· Поперечно - строгальные станки 3 шт.

В механическом цехе предусматриваются наличие производственных, служебных и бытовых помещений:

· Трансформаторная подстанция.

· Кладовая.

· Щитовая

Цех получает ЭСН от собственной цеховой трансформаторной подстанции (ТП), расположенной на расстоянии 1,5 км от ГПП завода. Производимое напряжение 10кВ. ГПП подключена к энергосистеме (ЭНС), расположенной на расстоянии 39 км.

Размеры цеха A x B x H = 48 x 30 x 7 м.

2. Расчет электрического освещения, выбор источников света и светильников

Расчет мощности осветительной установки производится методом коэффициента использования светового потока.

В проекте производится расчет общего освещения, которое должно обеспечить равную освещенность всей площади помещения.

Выполняем расчет электрического освещения для цеха механической обработки деталей.

Длина данного помещения составляет А=48м, ширина В=30м, высота Н=7м.

Коэффициенты отражения:

от потолка - ?п = 30%

от стен - ?с = 10%

от рабочей поверхности - ?р = 10%

Расчет производится для общего освещения, которое обеспечивает равномерную освещенность площади.

В качестве источников свет выбираем лампы типа ДРИ-250.

Р = 250 (Вт) ФН = 18700 (лм)

Тип светильников РСП-05.

Согласно СНиП, для рассчитываемого цеха определяем нормированную освещенность ЕН и коэффициент запаса КЗ.

ЕН = 300 (лк) КЗ = 1,5 z= 1,15

Приняв высоту свеса светильника hС = 1м, высоту рабочей поверхности hР = 0,8м, определяем расчетную высоту подвеса светильников.

Определяем индекс помещения

Согласно выбранного типа светильников и рассчитанного индекса помещения, из таблицы справочной книги определяем коэффициент использования светового потока:

В соответствии с определенными условиями рассчитываем требуемое количество источников света - n

Где

Принимаем количество светильников = 55шт. Светильники располагаются в 5 рядов по 11 шт. в каждом ряду. Общая мощность осветительной установки:

Производим расчет погрешности освещения:

Погрешность в допустимых нормах, значит, расчет произведен правильно.

План размещения светильников.

3. Расчет мощности и выбор вентиляционной установки

Вентиляционные установки предприятий выполняются обычно вентиляторами центробежного типа. Мощность приводного электродвигателя находится по формуле:

Где

КЗ = 1,1 ? 1,5 - коэффициент запаса.

Q (м3/с) - производительность вентиляционной установки.

НВ (Па) - напор (давление) газа

В - КПД вентилятора, м.б. принято?в = (700 ? 1000)

П - КПД механической передачи (?в = 0,9 ? 0,95)

Производительность вентиляционной установки определяется в зависимости от объема помещения V и требуемой кратности обмена воздуха в час?:

Вентиляторы создают перепад давления:

Нв=(0,01 - 0,1) · 105 Па

В качестве приводных электродвигателей выбирают обычно асинхронные короткозамкнутые электродвигатели, т.к. регулирования скорости в большинстве случаев не требуется.

Выбираем электродвигатель вентиляционной установки для помещения 48307м, которые должны обеспечить двукратный обмен воздуха в час и создать напор Нв = 1200Па.

Принимаем КЗ = 1,3; ?п = 0,95; ?в = 0,6

Выбираем для вентиляционной установки 3 приводных электродвигателя мощностью по 4кВт каждый. Технические данные двигателей занесём в таблицу 3.1

Таблица 3.1 Технические данные электродвигателя.

4. Выбор и расчет грузоподъемного механизма

Для подъема и перемещения грузов внутри цеха служит кран-балка грузоподъемностью 2,5 тонны.

Статическая мощность Рс,п кВт на валу двигателя в установившемся режиме при подъеме затрачивается на перемещение груза по вертикали и на преодоление потерь на трение

В данном цеху используется кран - балка грузоподъемностью G = 2,5 т. 1 шт.

Где

G - сила тяжести поднимаемого груза, Н

G0 - сила тяжести грузозахватывающего устройства, Н

при расчете принимают G0 = (2?5)% G

КПД подъемного механизма. При подъеме полного груза? = 0,8

Vп - скорость подъема груза, м/с

(Vп = 0,15 ?0,2 м/с) Vп = 0,17

Произведем выбор электродвигателя для кран - балки грузоподъемностью 2,5 тонн.

Выбираем электродвигатель, технические характеристики которого заносим в таблицу 4.1

Таблица 2 Технические данные электродвигателя.

6. Расчет мощности и выбор электродвигателя главного привода компрессорной установки

Производим расчет и выбор главного приводного электродвигателя.

электрический освещение электропривод компрессорный

Pдвк = Кз где

Q - производительность 20 м/с

А - работа Дж = 130

КПД индикаторный (0,6: 0,8) = 0,7

КПД механической передачи (0,9: 0,95) = 0,93

Кз - коэффициент запаса (1,05: 1,15) = 1,1

Pдвк = 1,1 кВт

Выбираем по каталогу двигатель ближайшей большой стандартной мощности и его технические характеристики записываем в таблицу.

7. Расчет и построение естественной механической характеристики АД

Привод компрессорной установки осуществляется с помощью асинхронного электродвигателя. Данные, которые приведены в таблице 4.

Таблица 4. Технические данные электродвигателя

Понятие о механической характеристики двигателя.

Основное назначение электродвигателя - преобразование электрической энергии в механическую. Эта энергия передается через вал электродвигателя производственной машины или механизма.

При установившейся скорости двигателя момент на двигателе и статической нагрузки равны. Статический момент, создаваемый механизмом, зависит от его механических свойств и может быть построенным независимым от условий скорости так и переменным в той или иной степени определения его зависимостью, изображается прямой или кривой линией в прямолинейной системе координат - называется механической характеристикой производственного процесса и представляется функцией.

Расчет естественной механической характеристики асинхронного двигателя, ведется по его паспортным данным. Естественной называется механическая характеристика, полученная при выполнении следующих условий:

Параметры питающей сети для данного двигателя должны быть номинальными;

Ни в одной из цепей двигателя не должно быть включено добавочное сопротивление;

Схема включения двигателя - стандартная;

Механическая характеристика АД рассчитывается по формуле Клосса и определяет зависимость между электромагнитным моментом и скольжением.

1. Определяем синхронную угловую скорость вращения.

рад/сек, где

Р - число пар полюсов =2

f - частота = 50Гц

2. Определяем номинальную угловую скорость вращения ротора.

nн - номинальная частота вращения двигателя.

3. Определяем номинальное скольжение.

4. Определяем номинальный момент электродвигателя.

5. Рассчитываем максимальный и пусковой момент

6. Определяем отношение

7. Рассчитываем критическое скольжение

8. Рассчитываем вспомогательный коэффициент

9. Производим расчет величин М и?, задаваясь различными значениями величины скольжения S

При S = Sн = 0

8.Расчет и построение графиков переходного процесса при пуске электродвигателя

При эксплуатации электроприводов двигатели подключают к сети, изменяют режим его работы с двигательного режима на тормозной и наоборот. Переход электропривода из одного установившегося режима к другому называют переходным режимом. Этот процесс обусловлен инерционными массами электропривода и электромагнитной инерцией обмоток электрических машин.

Цель расчета переходного процесса - определение времени переходного процесса и зависимостей? = f(t) и M = f(t).

Для расчета переходного процесса при нелинейных характеристиках применяют графоаналитический метод. Для выполнения расчета используется естественная механическая характеристика электродвигателя, рассчитанная и построенная в предыдущем разделе.

При пуске электродвигателя происходит увеличение его угловой скорости, следовательно в системе электропривода возникает динамический момент Мд

Мдин = М - Мст

где Мст - момент статического сопротивления приводного механизма.

Момент Мст создаваемый производственным механизмом, зависит от его механических свойств и может быть как постоянным, не зависящим от угловой скорости, так и переменным. Эта зависимость изображается линией в системе координат и называется механической характеристикой производственного механизма? = f(Mст)

Для построения механической характеристики приводного механизма необходимо определить статическую частоту вращения:

где Рст - статическая мощность на валу приводного электродвигателя

Статический момент на валу электродвигателя:

Начальный статический момент (при учебном проектировании)

Для расчета переходного процесса в системе координат в одном масштабе строятся две механические характеристики: электродвигателя и приводного механизма.

График f(?) = Мд - динамическая механическая характеристика строится путем графического вычитания графиков приводного электродвигателя и производственного механизма.

Производим разбиение построенных механических характеристик на не менее чем на 10 сечений с приращением скорости

Затем производится линеаризация динамической механической характеристики, т.е. замена ее ступенчатой. Для этого проводятся вертикальные линии на каждом из сечений скорости на динамической характеристике так, чтобы площади получившихся криволинейных треугольников были примерно одинаковы.

Для каждого из приращений скорости рассчитываем соответствующее приращение времени по формуле:

где i- порядковый номер сечения скорости

Jприв - приведенный момент инерции электропривода

где Jрот - момент инерции приводного электродвигателя, определяется из его паспортных данных.

Jмех - момент инерции приведенного в движение механизма =(1,5 - 2) Jрот

Текущее время переходного процесса рассчитывается нарастающим итогом по соответствующей сумме приращений времени:

t3 = ?t1+ ?t2+ ?t3

Текущее значение скорости находится через сумму приращений скорости:

Величины моментов на валу электродвигателя при построении графиков переходного процесса М1 М2… берутся из графика механической характеристики электродвигателя?=f(M) в конце каждого сечения.

Таблица 6 Результаты расчета переходного процесса.

М дин, Н м

9. Разработка схемы управления электроприводами компрессорной установки

Компрессоры относятся к группе механизмов, получивших широкое распространение на всех промышленных предприятиях. Компрессоры применяют для получения сжатого воздуха или газа, с целью использования его энергии в приводах пневматических молотов и прессов, По принципу действия компрессоры делятся на центробежные и поршневые.

Электрическая схема управления компрессорной установкой, состоящей из двух агрегатов К1 и К2. Двигатели компрессоров Д1и Д2 питаются от трёхфазной сети 380 В через автоматические выключатели ВА1 и ВА2 с комбинированными расцепителями. Включение и отключение двигателей производятся магнитными пускателями ПМ1и ПМ2. Цепи управления и сигнализации питаются фазным напряжением 220 В через однополюсный автоматический выключатель ВА3 с максимальным электромагнитным расцепителем.

Управление компрессорами может быть автоматическим или ручным. Выбор способа управления производится с помощью ключей управления КУ1 и КУ2. При ручном управлении включение и отключение пускателей ПМ1 и ПМ2 осущевстляется поворотом рукояток ключей КУ1 и КУ2 из положения 0. Автоматическое управление компрессорами производится при установке ключей КУ1 и КУ2 в положение А, а включение и отключение пускателей осущевстляется с помощью реле РУ1 и РУ2. Контроль давления воздуха в ресиверах производится двумя электрконтактными манометрами, контакты которых включены в цепи катушек реле РУ1 и РУ4. Очерёдность включения компрессоров при падении давления устанавливается с помощью переключателя режимов ПР. если ПР установлен в положении К1 то первым включается компрессор К1, предположим что ресиверы наполнены сжатым воздухом, давление соответствует верхнему пределу (контакты манометров М1-Н и М2-н разомкнуты) и компрессоры не работают. Если в результате потребления воздуха давление ресивера падает, то при достижении ими минимального значения, установленного для пуска первого компрессора, замкнётся контакты М1-н первого манометра (Н - нижний придел), сработает реле РУ1 и своим контактом включит пускатель ПМ1 двигателя первого компрессора. В результате компрессора К1 давление в ресиверах будет повышаться и контакт М1-н разомкнётся и это не приведёт к отключению компрессора, так как катушка реле продолжает получать питание через свой контакт и замкнутый контакт РУ4.

При повышении давления в ресиверах до максимального предела замкнётч контакт манометра М1-в (В-верхний предел), сработает реле РУ4 и своим контактом отключит реле РУ1, потеряет питание пускатель ПМ1 и компрессор К1 остановится. е.В случае не достаточной производительности первого компрессора или его неисправности давление в ресиверах будет продолжать падать. Если оно достигает предела установленного для замыкания контакта М2-н второго манометра (манометры М1 и М2 регулируются так, чтобы контакт М2-н замыкался по сравнению с контактом М1-н при несколько низким давлением), то сработают реле РУ3 и РУ2. Последнее своим контактом включит пускатель ПМ2, то есть вступит в работу компрессор К2. Реле РУ2 после замыкания контакта М2-н остаётся включенным через свой контакт и замкнутый контакт реле РУ4. когда давление в ресиверах результате совместной работе обоих компрессоров (или только К2 при неисправном К1) поднимается до верхнего придела, замкнётся контакты манометра М2-в и включится реле РУ4 в результате выключается реле РУ1 и РУ2 и пускатели ПМ1 и ПМ2.Оба компрессора остановятся. В схеме предусмотренный контроль исправности компрессорной установки. Если несмотря на работу обоих компрессоров давление в ресиверах продолжает падать или не изменяется то контакт М2-н нижнего предела остается замкнутым, и реле РУ3 будет включено. Оно своим контактом приведёт в действие реле времени РВ, которое с некоторой выдержкой времени, необходимой для обеспечения нормального подъема давления компрессором К2, замкнёт свой контакт РВ в цепи аварийно - предупредительной сигнализации, и персоналу будет подан сигнал о необходимости устранения неисправности. Сигнальная лампа ЛЖ служит для световой сигнализации и режиме работы компрессорной установки при ручном управлении. Она загорается при падении давления в ресиверах, получая питания через контакт реле РУ3. сигнальная лампа ЛБ и реле напряжения РКН служит для контроля наличия напряжения в цепях управления. Контроль температуры воздуха в компрессорах охлаждающей воды и масла осуществляется специальными реле, которые вместе с реле РКН воздействуют на цепи оварийно-предупредительной сигнализации извещая персонал о нормальном режиме установки.

10. Расчет и выбор аппаратуры управления и защиты для схемы и управления

Номинальный ток электродвигателя.

Выбираем аппарат защиты:

серии ВА 51 - 35

Iном выкл = 250 А; Iном расц = 200 А

Iтр = 1,1 Iном = 1,1 136,3 = 149,93 А

Iп = Iном Kп = 136,3 7 = 954,1 А

Iэрм = Кэрм Iтрн = 7 160 = 1120 А > 1,25 ·Iпуск

1120 ? 1112,6 Условие выполнено, значит аппарат защиты выбран правильно.

Выбираем магнитный пускатель:

Iном = 160 А

серии ПМЛ - 721002

IР 54; нереверсивный без кнопок « пуск « и «стоп «.

Выбираем питающий кабель:

АВВГ (4 ? 95) Iдоп = 170 А

11. Охрана труда и защита окружающей среды

Для очистки выбросов в атмосферу применяется их нейтрализация раствором щелочи, а так же могут быть твердые поглотители: различные марки активированных углей. Источниками вредных выбросов в атмосферу являются промышленные предприятия, поэтому в настоящее время распространены безотходные и малоотходные производства. На тепловых электростанциях устанавливают комплексные золоулавливающие установки. Очистка сточных вод мероприятия в системе охраны водоемов от загрязнения может быть естественной (бактериальной) и искусственной (химической). Прекращено строительство ГЭС на равнинных реках, так как происходит затопление больших площадей плодородных земель и лесных массивов.

Опасность электроустановки зависит от следующих факторов: класса напряжения, сопротивления изоляции, переходного сопротивления в месте замыкания на землю, удельное сопротивление грунта. Поражение человека возможно так же при прикосновении к нетоковедущим частям, которые могут оказаться под рабочим напряжением в аварийных случаях (пробой изоляции и т.д.). В этом случае безопасность обеспечивается выполнением заземления. Защитным заземлением называется преднамеренное соединение с землей металлических нетоковедущих частей электрооборудования (корпус электромашины и т.д). Заземление бывает естественное(металлоконструкции находящиеся в земле), искусственное (в виде труб, стержней, уголков длиной 2-2,5м вбитых в грунт) Для выполнения контура заземления роют траншеи- в земле глубиной 0,7, в которые вбивают электроды, а концы их сваривают. От контура проводят минимум две полосы в цех, которые соединяют с внутренним контуром заземления, к которому параллельно присоединяют корпуса электромашины, электрооборудования. Норма сопротивления заземлений на стороне 0,4 кв. должна быть не более 40м

Электрозащитные средства делятся на основные и дополнительные. Основные позволяют долгое время прикасаться к токоведущим частям, т.е. длительно выдерживают рабочее напряжение: изолирующие штанги и клещи, указатели напряжения, слесарно-монтажный инструмент с изолирующими рукоятками. Дополнительные дополняют основную защиту от поражения электрическим током: диэлектрические перчатки, боты, колпаки, накладки, коврики, изолирующие подставки, экранирующие костюмы (свыше 500кВ), переносное заземление, знаки и плакаты безопасности.

К производственным помещениям предусматривают следующие противопожарные требования: применение конструкций зданий с регламентирующим пределом огнеупорности. Огнезащитные материалы, водяное автоматическое пожаротушение, установка автоматической пожарной сигнализации. Для предотвращения огня применяют противопожарные стены, перегородки, (стены) двери, ворота, тамбуры.

12. Заключение

В данной курсовой работе приводится характеристика компрессорной установки, её работа и параметры. Производится выбор главного двигателя. Тип двигателя 4A132S4У3, его мощность 75 кВт.

Приведено описание электрической принципиальной схемы компрессорной установки и краткое описание его работы.

Выбрана аппаратура управления и защиты для двигателей. Выбираем магнитный пускатель серии ПМЛ - 721002 Iн=200А.

Рассчитано электрическое освещение цеха для обеспечения качества работы и удобства обслуживания оборудования цеха. Выбраны светильники типа ДРИ, количество ламп составляет 55 шт. Так как цех большой, то рассчитанная для него вентиляция, состоит из 4 вентиляторов мощностью по 4 кВт, для обеспечения качественного проветривания помещения при ведении различных видов работ.

Для транспортировки по цеху тяжелых грузов, загрузки и разгрузки материалов используют кран-балка мощностью 75 кВт грузоподъёмностью 2,5 тонны. Их расчет производится для максимального веса груза. В завершении курсового проекта произведен перечень мероприятий по электробезопасности, пожаробезопасности, охране труда и окружающей среды. В них перечисляются правила работы с промышленным оборудованием, при котором должны соблюдаться все требования для безопасной работы и устранение электрического и механического травмирования рабочего персонала.

13. Список литературы

1. Зимин Е.К. «Электрическое оборудование промышленных предприятий и установок». Энергоиздат 1981

2. Шеховцов В.П. «Электрическое и электромеханическое оборудование». М.: Форум-Инфа-М. 2004

3. Дьяков В.И. «Типовые расчеты по электрооборудованию». М.: Энергоиздат 1985

4. Электротехнический справочник. том II, III под ред. В.Г. Герасимов. М.: Энергоатомиздат 1986

5. Сибикин Ю.Д., Сибикин М.Ю. «Электробезопасность при эксплуатации электроустановок промышленных предприятий». М.: ПрофОбрИздат 2002

6. Айзенберг Б.Ю. «Справочная книга по светотехнике». М.: Энергоатмиздат. 1995

7. Соколова Е.М. «Электрическое и электромеханическое оборудование». М.: Мастерство 2001

8. Кноринг Г.М. .Справочная книга для проектирования электрического освещения.. Л.: Энергия 1976.

9. Кнорринг Г.М. «Осветительные установки». М.: Энергоиздат 1981

10. Усатенко С.Г. «Выполнение электрических схем по ЕСКД». М.: Издательство стандартов. 1989

Размещено на Allbest.ru

Подобные документы

    Выбор источников света для системы равномерного освещения цеха. Светотехнический расчет системы освещения и определение единичной установленной мощности источников света в помещениях. Разработка схемы питания осветительной установки. Выбор проводов.

    курсовая работа , добавлен 10.11.2016

    Выбор видов и систем освещения, размещение осветительных приборов. Расчет освещения методом удельной мощности. Выбор напряжения электрической сети, источников и схемы питания установки. Вид проводки и проводниковых материалов. Расчет сечения проводов.

    курсовая работа , добавлен 25.08.2012

    Выбор источников света для системы общего равномерного освещения цеха и административно-бытовых помещений. Выбор нормируемой освещенности и коэффициента запаса. Определение расчетной мощности источников света. Схема питания осветительной установки.

    курсовая работа , добавлен 17.02.2016

    Светотехнический расчет механического, заточного и инструментального отделений. Выбор источников света, системы освещения. Размещение светильников в помещении. Мощность источников света. Рекомендации по монтажу и мероприятия по технике безопасности.

    курсовая работа , добавлен 06.03.2014

    Светотехнический расчет склада готовой продукции. Определение мощности источников света. Размещение светильников в помещении. Светотехнический расчет склада тарных химикатов. Выбор типа групповых щитков, место их установки. Электрический расчет освещения.

    курсовая работа , добавлен 12.02.2015

    Выбор источников света для системы общего равномерного освещения цеха и вспомогательных помещений. Определение единичной установленной мощности источников света. Разработка схемы питания осветительной установки. Выбор сечения проводов и кабелей сети.

    курсовая работа , добавлен 15.01.2013

    Определение мощности электрической осветительной установки для создания заданной освещённости слесарного цеха. Выбор системы освещения, источников света, светильников и их размещения. Применение метода коэффициента использования светового потока.

    курсовая работа , добавлен 05.10.2014

    Выбор систем освещения помещений цеха и источников света. Расчет электрического освещения. Выбор напряжения и источника питания. Расчет нагрузки электрического освещения, сечения проводников по нагреву и потере напряжения, потерь напряжения в проводниках.

    курсовая работа , добавлен 22.10.2015

    Светотехнический расчет освещения с целью выбора напряжения и источников питания осветительной сети кузнечного цеха, механического отделения и бытовки. Схема питания осветительной установки. Размещение светильников в помещении, определение их мощности.

    курсовая работа , добавлен 11.03.2013

    Краткое описание центробежного вентилятора, его функции и сферы практического применения. Выбор системы электропривода, расчет мощности и выбор двигателя, питающих кабелей и проводов. Описание работы схемы управления, выбор ее составных элементов.

Выбор схемы электроснабжения неразрывно связан с вопросом напряжения, мощности, категории ЭП по надежности, удаленности ЭП .

В отношении обеспечения надежности электроснабжения электроприемники разделяются на следующие три категории.

Электроприемники первой категории – электроприемники, перерыв электроснабжения которых может повлечь за собой опасность для жизни людей, угрозу для безопасности государства, значительный материальный ущерб, расстройство сложного технологического процесса, нарушение функционирования особо важных элементов коммунального хозяйства, объектов связи и телевидения.

Из состава электроприемников первой категории выделяется особая группа электроприемников, бесперебойная работа которых необходима для безаварийного останова производства в целях предотвращения угрозы жизни людей, взрывов и пожаров.

Электроприемники второй категории – электроприемники, перерыв электроснабжения которых приводит к массовому недоотпуску продукции, массовым простоям рабочих, механизмов и промышленного транспорта, нарушению нормальной деятельности значительного количества городских и сельских жителей.

Электроприемники третьей категории – все остальные электроприемники, не подпадающие под определения первой и второй категорий.

Электроприемники первой категории в нормальных режимах должны обеспечиваться электроэнергией от двух независимых взаимно резервирующих источников питания, и перерыв их электроснабжения при нарушении электроснабжения от одного из источников питания может быть допущен лишь на время автоматического восстановления питания.

Для электроснабжения особой группы электроприемников первой категории должно предусматриваться дополнительное питание от третьего независимого взаимно резервирующего источника питания.

В качестве третьего независимого источника питания для особой группы электроприемников и в качестве второго независимого источника питания для остальных электроприемников первой категории могут быть использованы местные электростанции, электростанции энергосистем (в частности, шины генераторного напряжения), предназначенные для этих целей агрегаты бесперебойного питания, аккумуляторные батареи и т. п.

Если резервированием электроснабжения нельзя обеспечить непрерывность технологического процесса или если резервирование электроснабжения экономически нецелесообразно, должно быть осуществлено технологическое резервирование, например, путем установки взаимно резервирующих технологических агрегатов, специальных устройств безаварийного останова технологического процесса, действующих при нарушении электроснабжения.


Электроснабжение электроприемников первой категории с особо сложным непрерывным технологическим процессом, требующим длительного времени на восстановление нормального режима, при наличии технико-экономических обоснований рекомендуется осуществлять от двух независимых взаимно резервирующих источников питания, к которым предъявляются дополнительные требования, определяемые особенностями технологического процесса.

Электроприемники второй категории в нормальных режимах должны обеспечиваться электроэнергией от двух независимых взаимно резервирующих источников питания.

Для электроприемников второй категории при нарушении электроснабжения от одного из источников питания допустимы перерывы электроснабжения на время, необходимое для включения резервного питания действиями дежурного персонала или выездной оперативной бригады.

Для электроприемников третьей категории электроснабжение может выполняться от одного источника питания при условии, что перерывы электроснабжения, необходимые для ремонта или замены поврежденного элемента системы электроснабжения, не превышают одних суток.

Вопрос выбора схемы электроснабжения, уровня напряжения решается на основе технико-экономического сравнения вариантов.

Для питания промышленных предприятий применяют электросети напряжением 6, 10, 20, 35, 110 и 220 кВ.

В питающих и распределительных сетях средних предприятий принимается напряжение 6–10 кВ. Напряжение 380/220 В является основным в электроустановках до 1000 В. Внедрение напряжения 660 В экономически эффективно и рекомендуется применять в первую очередь для вновь строящихся промышленных объектов .

Напряжение 42 В (36 и 24) применяется в помещениях с повышенной опасностью и особо опасных, для стационарного местного освещения и ручных переносных ламп.

Напряжение 12 В применяется только при особо неблагоприятных условиях в отношении опасности поражения электрическим током, например при работе в котлах или других металлических резервуарах с использованием ручных переносных светильников.

Применяются две основные схемы распределения электроэнергии – радиальная и магистральная в зависимости от числа и взаимного расположения цеховых подстанций или других ЭП по отношению к питающему их пункту.

Обе схемы обеспечивают требуемую надежность электроснабжения ЭП любой категории.

Радиальные схемы распределения применяются главным образом в тех случаях, когда нагрузки рассредоточены от центра питания. Одноступенчатые радиальные схемы применяются для питания крупных сосредоточенных нагрузок (насосные, компрессорные, преобразовательные агрегаты, электропечи и т. п.) непосредственно от центра питания, а также для питания цеховых подстанций. Двухступенчатые радиальные схемы используют для питания небольших цеховых подстанций и электроприемников ВН в целях разгрузки основных энергетических центров (рис. З.1). На промежуточных распредпунктах устанавливается вся коммутационная аппаратура. Следует избегать применения многоступенчатых схем для внутрицехового электроснабжения.

Распределительные пункты и подстанции с электроприемниками I и II категорий питаются, как правило, по двум радиальным линиям, которые работают раздельно, каждая на свою секцию, при отключении одной из них нагрузка автоматически воспринимается другой секцией.

Рис. 3.1. Фрагмент радиальной схемы распределения электроэнергии

Магистральные схемы распределения электроэнергии следует применять при распределенных нагрузках, когда потребителей много и радиальные схемы экономически нецелесообразны. Основные преимущества: позволяют лучше загрузить при нормальном режиме кабели, сэкономить число шкафов на распределительном пункте, сократить длину магистрали. К недостаткам магистральных схем относятся усложнение схем коммутации, одновременное отключение ЭП нескольких производственных участков или цехов, питающихся от данной магистрали при ее повреждении. Для питания ВП I и II категорий должны применяться схемы с двумя и более параллельными сквозными магистралями (рис. 3.2).

Питание ЭП в сетях напряжением до 1000 В II и III категорий по надежности электроснабжения рекомендуется осуществлять от однотрансформаторных комплектных трансформаторных подстанций (КТП).

Выбор двухтрансформаторных КТП должен быть обоснован. Наиболее целесообразны и экономичны для внутрицехового электроснабжения в сетях до 1 кВ магистральные схемы блоков трансформатор–магистраль без распределительных устройств на подстанции с применением комплектных шинопроводов.

Радиальные схемы внутрицеховых питающих сетей применяют, когда невозможно выполнение магистральных схем по условиям территориального размещения электрических нагрузок, а также по условиям среды.

Для электроснабжения цеховых потребителей в практике проектирования редко применяют радиальные или магистральные схемы в чистом виде. Наибольшее распространение находят так называемые смешанные схемы электрических сетей, сочетающие в себе элементы как радиальных, так и магистральных схем.

Рис. 3.2. Схема с двойными сквозными магистралями

Схемы электроснабжения и все электроустановки переменного и постоянного тока предприятия напряжением до 1 кВ и выше должны удовлетворять общим требования к их заземлению и защите людей и животных от поражения электрическим током как в нормальном режиме работы электроустановки, так и при повреждении изоляции .

Электроустановки в отношении мер электробезопасности разделяются:

– на электроустановки напряжением выше 1 кВ в сетях с глухозаземленной или эффективно заземленной нейтралью ;

– электроустановки напряжением выше 1 кВ в сетях с изолированной или заземленной через дугогасящий реактор или резистор нейтралью;

– электроустановки напряжением до 1 кВ в сетях с глухозаземленной нейтралью;

– электроустановки напряжением до 1 кВ в сетях с изолированной нейтралью.

Для электроустановок напряжением до 1 кВ приняты нижеследующие обозначения. Система TN – система, в которой нейтраль источника питания глухозаземлена, а открытые проводящие части электроустановки присоединены к глухозаземленной нейтрали источника посредством нулевых защитных проводников (рис. 3.3–3.7).

Рис. 3.3. Система TN-C – система TN , в которой нулевой защитный

и нулевой рабочий проводники совмещены в одном проводнике

на всем ее протяжении

Первая буква – состояние нейтрали источника питания относительно

T – заземленная нейтраль;

I – изолированная нейтраль.

Вторая буква – состояние открытых проводящих частей относительно земли:

T – открытые проводящие части заземлены, независимо от отношения к земле нейтрали источника питания или какой-либо точки питающей сети;

N – открытые проводящие части присоединены к глухозаземленной нейтрали источника питания.

Последующие (после N ) буквы – совмещение в одном проводнике или разделение функций нулевого рабочего и нулевого защитного проводников:

S – нулевой рабочий (N ) и нулевой защитный (PE ) проводники разделены;

C – функции нулевого защитного и нулевого рабочего проводников совмещены в одном проводнике (PEN -проводник);

N – нулевой рабочий (нейтральный) проводник;

PE – защитный проводник (заземляющий проводник, нулевой защитный проводник, защитный проводник системы уравнивания потенциалов);

PEN – совмещенный нулевой защитный и нулевой рабочий проводник.

Нулевой рабочий (нейтральный) проводник (N ) – проводник в электроустановках до 1 кВ, предназначенный для питания электроприемников и соединенный с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока, с глухозаземленной точкой источника в сетях постоянного тока.

Совмещенный нулевой защитный и нулевой рабочий (PEN ) проводник – проводник в электроустановках напряжением до 1 кВ, совмещающий функции нулевого защитного и нулевого рабочего проводников.

Для защиты от поражения электрическим током в нормальном режиме должны быть применены по отдельности или в сочетании следующие меры защиты от прямого прикосновения:

– основная изоляция токоведущих частей;

– ограждения и оболочки;

– установка барьеров;

– размещение вне зоны досягаемости;

– применение сверхнизкого (малого) напряжения.

Рис. 3.4. Система TN-S – система TN , в которой нулевой защитный

и нулевой рабочий проводники разделены на всем ее протяжении

Рис. 3.5. Система TN-C-S – система TN , в которой функции нулевого

защитного и нулевого рабочего проводников совмещены в одном

проводнике в какой-то ее части, начиная от источника питания

Рис. 3.6. Система TT – система, в которой нейтраль источника питания

глухо заземлена, а открытые проводящие части электроустановки

заземлены при помощи заземляющего устройства, электрически

независимого от глухозаземленной нейтрали источника

Рис. 3.7. Система IT –система, в которой нейтраль источника питания

изолирована от земли или заземлена через приборы или устройства,

имеющие большое сопротивление, а открытые проводящие части

электроустановки заземлены

Для дополнительной защиты от прямого прикосновения в электроустановках напряжением до 1 кВ при наличии требований других глав ПУЭ следует применять устройства защитного отключения (УЗО) с номинальным отключающим дифференциальным током не более 30 мА.

Для защиты от поражения электрическим током в случае повреждения изоляции должны быть применены по отдельности или в сочетании следующие меры защиты при косвенном прикосновении:

– защитное заземление;

– автоматическое отключение питания;

– уравнивание потенциалов;

– выравнивание потенциалов;

– двойная или усиленная изоляция;

– сверхнизкое (малое) напряжение;

– защитное электрическое разделение цепей;

– изолирующие (непроводящие) помещения, зоны, площадки.

Электроустановки напряжением до 1 кВ жилых, общественных и промышленных зданий и наружных установок должны, как правило, получать питание от источника с глухозаземленной нейтралью с применением системы TN .

Питание электроустановок напряжением до 1 кВ переменного тока от источника с изолированной нейтралью с применением системы IT следует выполнять, как правило, при недопустимости перерыва питания при первом замыкании на землю или на открытые проводящие части, связанные с системой уравнивания потенциалов. В таких электроустановках для защиты при косвенном прикосновении при первом замыкании на землю должно быть выполнено защитное заземление в сочетании с контролем изоляции сети или применены УЗО с номинальным отключающим дифференциальным током не более 30 мА. При двойном замыкании на землю должно быть выполнено автоматическое отключение питания в соответствии с ПУЭ.

Питание электроустановок напряжением до 1 кВ от источника с глухозаземленной нейтралью и с заземлением открытых проводящих частей при помощи заземлителя, не присоединенного к нейтрали (система TT ), допускается только в тех случаях, когда условия электробезопасности в системе TN не могут быть обеспечены. Для защиты при косвенном прикосновении в таких электроустановках должно быть выполнено автоматическое отключение питания с обязательным применением УЗО.

При этом должно быть соблюдено условие

R a I a ≤ 50 B,

где I a – ток срабатывания защитного устройства;

R a – суммарное сопротивление заземлителя и заземляющего проводника наиболее удаленного электроприемника при применении УЗО для защиты нескольких электроприемников.

При применении системы TN рекомендуется выполнять повторное заземление PE- и PEN- проводников на вводе в электроустановки зданий, а также в других доступных местах. Для повторного заземления в первую очередь следует использовать естественные заземлители. Сопротивление заземлителя повторного заземления не нормируется.

В электроустановках напряжением выше 1 кВ с изолированной нейтралью для защиты от поражения электрическим током должно быть выполнено защитное заземление открытых проводящих частей.

В прил. 3 приведены схемы электроснабжения отдельных зданий, а в прил. 4 – графические и буквенные обозначения в электрических схемах.