Интегралы дробно рациональных функций. Примеры интегрирования рациональных функций (дробей)

Рациональная функция - это дробь вида , числитель и знаменатель которой - многочлены или произведения многочленов.

Пример 1. Шаг 2.

.

Умножаем неопределённые коэффициенты на многочлены, которых нет в данной отдельной дроби, но которые есть в других полученных дробях:

Раскрываем скобки и приравниваем полученое к полученному выражению числитель исходной подынтегральной дроби:

В обеих частях равенства отыскиваем слагаемые с одинаковыми степенями икса и составляем из них систему уравнений:

.

Сокращаем все иксы и получаем эквивалентную систему уравнений:

.

Таким образом, окончательное разложение подынтегральной дроби на сумму простых дробей:

.

Пример 2. Шаг 2. На шаге 1 получили следующее разложение исходной дроби на сумму простых дробей с неопределёнными коэффициентами в числителях:

.

Теперь начинаем искать неопределённые коэффициенты. Для этого числитель исходной дроби в выражении функции приравниваем к числителю выражения, полученного после приведения суммы дробей к общему знаменателю:

Теперь требуется составить и решить систему уравнений. Для этого приравниваем коэффициенты при переменной в соответствующей степени в числителе исходного выражения функции и аналогичные коэффициенты в полученном на предыдущем шаге выражения:

Решаем полученную систему:

Итак, , отсюда

.

Пример 3. Шаг 2. На шаге 1 получили следующее разложение исходной дроби на сумму простых дробей с неопределёнными коэффициентами в числителях:

Начинаем искать неопределённые коэффициенты. Для этого числитель исходной дроби в выражении функции приравниваем к числителю выражения, полученного после приведения суммы дробей к общему знаменателю:

Как и в предыдущих примерах составляем систему уравнений:

Сокращаем иксы и получаем эквивалентную систему уравнений:

Решая систему, получаем следующие значения неопределённых коэффициентов:

Получаем окончательное разложение подынтегральной дроби на сумму простых дробей:

.

Пример 4. Шаг 2. На шаге 1 получили следующее разложение исходной дроби на сумму простых дробей с неопределёнными коэффициентами в числителях:

.

Как приравнивать числитель исходной дроби к выражению в числителе, полученному после разложения дроби на сумму простых дробей и приведения этой суммы к общему знаменателю, мы уже знаем из предыдуших примеров. Поэтому лишь для контроля приведём получившуюся систему уравнений:

Решая систему, получаем следующие значения неопределённых коэффициентов:

Получаем окончательное разложение подынтегральной дроби на сумму простых дробей:

Пример 5. Шаг 2. На шаге 1 получили следующее разложение исходной дроби на сумму простых дробей с неопределёнными коэффициентами в числителях:

.

Самостоятельно приводим к общему знаменателю эту сумму, приравнивать числитель этого выражения к числителю исходной дроби. В результате должна получиться следующая система уравнений:

Решая систему, получаем следующие значения неопределённых коэффициентов:

.

Получаем окончательное разложение подынтегральной дроби на сумму простых дробей:

.

Пример 6. Шаг 2. На шаге 1 получили следующее разложение исходной дроби на сумму простых дробей с неопределёнными коэффициентами в числителях:

Производим с этой суммой те же действия, что и в предыдущих примерах. В результате должна получиться следующая система уравнений:

Решая систему, получаем следующие значения неопределённых коэффициентов:

.

Получаем окончательное разложение подынтегральной дроби на сумму простых дробей:

.

Пример 7. Шаг 2. На шаге 1 получили следующее разложение исходной дроби на сумму простых дробей с неопределёнными коэффициентами в числителях:

.

После известных действий с полученной суммой должна получиться следующая система уравнений:

Решая систему, получаем следующие значения неопределённых коэффициентов:

Получаем окончательное разложение подынтегральной дроби на сумму простых дробей:

.

Пример 8. Шаг 2. На шаге 1 получили следующее разложение исходной дроби на сумму простых дробей с неопределёнными коэффициентами в числителях:

.

Внесём некоторые изменения в уже доведённые до автоматизма действия для получения системы уравнений. Есть искусственный приём, который в некоторых случаях помогает избежать лишних вычислений. Приводя сумму дробей к общему знаменателю получаем и приравнивая числитель этого выражения к числителю исходной дроби, получаем.

Одним из важнейших классов функций, интегралы от которых выражаются через элементарные функции, является класс рациональных функций.

Определение 1. Функция вида где
- многочлены степеней
n и m называется рациональной. Целая рациональная функция, т.е. многочлен, интегрируется непосредственно. Интеграл от дробно-рациональной функции можно найти путем разложения на слагаемые, которые стандартным образом преобразуются к основным табличным интегралам.

Определение 2. Дробь
называется правильной, если степень числителя
n меньше степени знаменателя m . Дробь, у которой степень числителя больше или равна степени знаменателя, называется неправильной.

Любую неправильную дробь можно представить в виде суммы многочлена и правильной дроби. Это делается посредством деления многочлена на многочлен «столбиком», подобно делению чисел.

Пример.

Представим дробь
в виде суммы многочлена и правильной дроби:

x - 1


3

3

3

Первое слагаемое
в частном получается как результат деления старшего члена
, делимого на старший членх делителя. Затем умножаем
на делительх-1 и полученный результат вычитаем из делимого; аналогично находятся остальные слагаемые неполного частного.

Выполнив деление многочленов, получим:

Это действие называется выделением целой части.

Определение 3. Простейшими дробями называются правильные рациональные дроби следующих типов:

I.

II.
(K=2, 3, …).

III.
где квадратный трехчлен

IV.
где К=2, 3, …; квадратный трехчлен
не имеет действительных корней.

а) разложить знаменатель
на простейшие действительные множители (согласно основной теореме алгебры это разложение может содержать линейные двучлены вида
и квадратные трехчлены
, не имеющие корней);

б) написать схему разложения данной дроби на сумму простейших дробей. При этом каждому сомножителю вида
соответствуетk слагаемых видов I и II:

каждому сомножителю вида
соответствует е слагаемых видовIII и IV:

Пример.

Записать схему разложения дроби
в сумму простейших.

в) выполнить сложение полученных простейших дробей. Записать равенство числителей полученной и исходной дробей;

г) найти коэффициенты соответствующего разложения:
(методы решения будут рассмотрены ниже);

д) найденные значения коэффициентов подставить в схему разложения.

Интегрирование всякой правильной рациональной дроби после разложения на простейшие слагаемые сводится к нахождению интегралов одного из типов:




(k и e =2, 3, …).

Вычисление интеграла сводится к формулеIII:

интеграла - к формулеII:

интеграл можно найти по правилу, указанному в теории интегрирования функций, содержащих квадратный трехчлен;- путем преобразований, показанных ниже в примере 4.

Пример 1.

а) разложим знаменатель на множители:

б) напишем схему разложения подынтегральной функции на слагаемые:

в) выполним сложение простейших дробей:

Запишем равенство числителей дробей:

г) для нахождения неизвестных коэффициентов A, B, C существуют два метода.

Два многочлена равны тогда и только тогда, когда равны их коэффициенты при одинаковых степенях х , поэтому можно составить соответствующую систему уравнений. В этом заключается один из методов решения.

Коэффициенты при

свободные члены (коэф. при ):4А=8.

Решив систему, получим А=2 , В=1 , С= - 10 .

Другой метод - частных значений будет рассмотрен в следующем примере;

д) подставим найденные значения в схему разложения:

Подставляя под знак интеграла полученную сумму, и интегрируя каждое слагаемое отдельно, найдем:

Пример 2.

Тождество есть равенство, справедливое при любых значениях входящих в него неизвестных. На этом основан метод частных значений. Можно придавать х любые значения. Удобнее для вычислений брать те значения, которые обращают в нуль какие-либо слагаемые в правой части равенства.

Пусть х = 0 . Тогда 1 = А 0(0+2)+В 0 (0-1)+С (0-1)(0+2).

Аналогично при х = - 2 имеем 1= - 2В*(-3 ), при х = 1 имеем 1 = 3А .

Следовательно,

Пример 3.

г) сначала воспользуемся методом частных значений.

Пусть х = 0 , тогда 1 = А 1, А = 1 .

При х = - 1 имеем - 1+4+2+1 = - В(1+1+1) или 6 = - 3В , В = - 2 .

Для нахождения коэффициентов С и D нужно составить еще два уравнения. Для этого можно взять любые другие значения х , например х = 1 и х = 2 . Можно воспользоваться первым методом, т.е. приравнять коэффициенты при каких-либо одинаковых степенях х , например при и. Получим

1 = А+В+С и 4 = С + D – В.

Зная А = 1 , В = -2 , найдем С = 2 , D = 0 .

Таким образом, при вычислении коэффициентов можно сочетать оба метода.

Последний интеграл находим отдельно по правилу, указанному в методе веления новой переменной. Выделим полный квадрат в знаменателе:

положим,
тогда
Получим:

=

Подставляя в предыдущее равенство, найдем

Пример 4.

Найти

б)

д)

Интегрируя, имеем:

Первый интеграл преобразуем к формуле III:

Второй интеграл преобразуем к формуле II:

В третьем интеграле заменим переменную:

(При выполнении преобразований воспользовались формулой тригонометрии

Найти интегралы:

51.

52.

53.

54.

55.

56.

57.

58.

Вопросы для самопроверки.

    Какие из данных рациональных дробей являются правильными:

2. Верно ли записана схема разложения дроби на сумму простейших дробей?


Интегрирование дробно-рациональной функции.
Метод неопределенных коэффициентов

Продолжаем заниматься интегрированием дробей. Интегралы от некоторых видов дробей мы уже рассмотрели на уроке , и этот урок в некотором смысле можно считать продолжением. Для успешного понимания материала необходимы базовые навыки интегрирования, поэтому если Вы только приступили к изучению интегралов, то есть, являетесь чайником, то необходимо начать со статьи Неопределенный интеграл. Примеры решений .

Как ни странно, сейчас мы будем заниматься не столько нахождением интегралов, сколько… решением систем линейных уравнений. В этой связи настоятельно рекомендую посетить урок А именно – нужно хорошо ориентироваться в методах подстановки («школьном» методе и методе почленного сложения (вычитания) уравнений системы).

Что такое дробно-рациональная функция? Простыми словами, дробно-рациональная функция – это дробь, в числителе и знаменателе которой находятся многочлены либо произведения многочленов. При этом дроби являются более навороченными, нежели те, о которых шла речь в статье Интегрирование некоторых дробей .

Интегрирование правильной дробно-рациональной функции

Сразу пример и типовой алгоритм решения интеграла от дробно-рациональной функции.

Пример 1


Шаг 1. Первое, что мы ВСЕГДА делаем при решении интеграла от дробно-рациональной функции – это выясняем следующий вопрос: является ли дробь правильной? Данный шаг выполняется устно, и сейчас я объясню как:

Сначала смотрим на числитель и выясняем старшую степень многочлена:

Старшая степень числителя равна двум.

Теперь смотрим на знаменатель и выясняем старшую степень знаменателя. Напрашивающийся путь – это раскрыть скобки и привести подобные слагаемые, но можно поступить проще, в каждой скобке находим старшую степень

и мысленно умножаем: – таким образом, старшая степень знаменателя равна трём. Совершенно очевидно, что если реально раскрыть скобки, то мы не получим степени, больше трёх.

Вывод : Старшая степень числителя СТРОГО меньше старшей степени знаменателя, значит, дробь является правильной.

Если бы в данном примере в числителе находился многочлен 3, 4, 5 и т.д. степени, то дробь была бы неправильной .

Сейчас мы будем рассматривать только правильные дробно-рациональные функции . Случай, когда степень числителя больше либо равна степени знаменателя, разберём в конце урока.

Шаг 2. Разложим знаменатель на множители. Смотрим на наш знаменатель:

Вообще говоря, здесь уже произведение множителей, но, тем не менее, задаемся вопросом: нельзя ли что-нибудь разложить еще? Объектом пыток, несомненно, выступит квадратный трехчлен. Решаем квадратное уравнение:

Дискриминант больше нуля, значит, трехчлен действительно раскладывается на множители:

Общее правило: ВСЁ, что в знаменателе МОЖНО разложить на множители – раскладываем на множители

Начинаем оформлять решение:

Шаг 3. Методом неопределенных коэффициентов раскладываем подынтегральную функцию в сумму простых (элементарных) дробей. Сейчас будет понятнее.

Смотрим на нашу подынтегральную функцию:

И, знаете, как-то проскакивает интуитивная мысль, что неплохо бы нашу большую дробь превратить в несколько маленьких. Например, вот так:

Возникает вопрос, а можно ли вообще так сделать? Вздохнем с облегчением, соответствующая теорема математического анализа утверждает – МОЖНО. Такое разложение существует и единственно .

Только есть одна загвоздочка, коэффициенты мы пока не знаем, отсюда и название – метод неопределенных коэффициентов.

Как вы догадались, последующие телодвижения так, не гоготать! будут направлены на то, чтобы как раз их УЗНАТЬ – выяснить, чему же равны .

Будьте внимательны, подробно объясняю один раз!

Итак, начинаем плясать от:

В левой части приводим выражение к общему знаменателю:

Теперь благополучно избавляемся от знаменателей (т.к. они одинаковы):

В левой части раскрываем скобки, неизвестные коэффициенты при этом пока не трогаем:

Заодно повторяем школьное правило умножение многочленов. В свою бытность учителем, я научился выговаривать это правило с каменным лицом: Для того чтобы умножить многочлен на многочлен нужно каждый член одного многочлена умножить на каждый член другого многочлена .

С точки зрения понятного объяснения коэффициенты лучше внести в скобки (хотя лично я никогда этого не делаю в целях экономии времени):

Составляем систему линейных уравнений.
Сначала разыскиваем старшие степени:

И записываем соответствующие коэффициенты в первое уравнение системы:

Хорошо запомните следующий нюанс . Что было бы, если б в правой части вообще не было ? Скажем, красовалось бы просто без всякого квадрата? В этом случае в уравнении системы нужно было бы поставить справа ноль: . Почему ноль? А потому что в правой части всегда можно приписать этот самый квадрат с нулём: Если в правой части отсутствуют какие-нибудь переменные или (и) свободный член, то в правых частях соответствующих уравнений системы ставим нули .

Записываем соответствующие коэффициенты во второе уравнение системы:

И, наконец, минералка, подбираем свободные члены.

Эх,…что-то я расшутился. Шутки прочь – математика наука серьезная. У нас в институтской группе никто не смеялся, когда доцент сказала, что разбросает члены по числовой прямой и выберет из них самые большие. Настраиваемся на серьезный лад. Хотя… кто доживет до конца этого урока, все равно будет тихо улыбаться.

Система готова:

Решаем систему:

(1) Из первого уравнения выражаем и подставляем его во 2-е и 3-е уравнения системы. На самом деле можно было выразить (или другую букву) из другого уравнения, но в данном случае выгодно выразить именно из 1-го уравнения, поскольку там самые маленькие коэффициенты .

(2) Приводим подобные слагаемые во 2-м и 3-м уравнениях.

(3) Почленно складываем 2-е и 3-е уравнение, при этом, получая равенство , из которого следует, что

(4) Подставляем во второе (или третье) уравнение, откуда находим, что

(5) Подставляем и в первое уравнение, получая .

Если возникли трудности с методами решения системы отработайте их на уроке Как решить систему линейных уравнений?

После решения системы всегда полезно сделать проверку – подставить найденные значения в каждое уравнение системы, в результате всё должно «сойтись».

Почти приехали. Коэффициенты найдены, при этом:

Чистовое оформление задание должно выглядеть примерно так:




Как видите, основная трудность задания состояла в том, чтобы составить (правильно!) и решить (правильно!) систему линейных уравнений. А на завершающем этапе всё не так сложно: используем свойства линейности неопределенного интеграла и интегрируем. Обращаю внимание, что под каждым из трёх интегралов у нас «халявная» сложная функция, об особенностях ее интегрирования я рассказал на уроке Метод замены переменной в неопределенном интеграле .

Проверка: Дифференцируем ответ:

Получена исходная подынтегральная функция, значит, интеграл найден правильно.
В ходе проверки пришлось приводить выражение к общему знаменателю, и это не случайно. Метод неопределенных коэффициентов и приведение выражения к общему знаменателю – это взаимно обратные действия .

Пример 2

Найти неопределенный интеграл.

Вернемся к дроби из первого примера: . Нетрудно заметить, что в знаменателе все множители РАЗНЫЕ. Возникает вопрос, а что делать, если дана, например, такая дробь: ? Здесь в знаменателе у нас степени, или, по-математически кратные множители . Кроме того, есть неразложимый на множители квадратный трехчлен (легко убедиться, что дискриминант уравнения отрицателен, поэтому на множители трехчлен никак не разложить). Что делать? Разложение в сумму элементарных дробей будет выглядеть наподобие с неизвестными коэффициентами вверху или как-то по-другому?

Пример 3

Представить функцию

Шаг 1. Проверяем, правильная ли у нас дробь
Старшая степень числителя: 2
Старшая степень знаменателя: 8
, значит, дробь является правильной.

Шаг 2. Можно ли что-нибудь разложить в знаменателе на множители? Очевидно, что нет, всё уже разложено. Квадратный трехчлен не раскладывается в произведение по указанным выше причинам. Гуд. Работы меньше.

Шаг 3. Представим дробно-рациональную функцию в виде суммы элементарных дробей.
В данном случае, разложение имеет следующий вид:

Смотрим на наш знаменатель:
При разложении дробно-рациональной функции в сумму элементарных дробей можно выделить три принципиальных момента:

1) Если в знаменателе находится «одинокий» множитель в первой степени (в нашем случае ), то вверху ставим неопределенный коэффициент (в нашем случае ). Примеры №1,2 состояли только из таких «одиноких» множителей.

2) Если в знаменателе есть кратный множитель , то раскладывать нужно так:
– то есть последовательно перебрать все степени «икса» от первой до энной степени. В нашем примере два кратных множителя: и , еще раз взгляните на приведенное мной разложение и убедитесь, что они разложены именно по этому правилу.

3) Если в знаменателе находится неразложимый многочлен второй степени (в нашем случае ), то при разложении в числителе нужно записать линейную функцию с неопределенными коэффициентами (в нашем случае с неопределенными коэффициентами и ).

На самом деле, есть еще 4-й случай, но о нём я умолчу, поскольку на практике он встречается крайне редко.

Пример 4

Представить функцию в виде суммы элементарных дробей с неизвестными коэффициентами.

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.
Строго следуйте алгоритму!

Если Вы разобрались, по каким принципам нужно раскладывать дробно-рациональную функцию в сумму, то сможете разгрызть практически любой интеграл рассматриваемого типа.

Пример 5

Найти неопределенный интеграл.

Шаг 1. Очевидно, что дробь является правильной:

Шаг 2. Можно ли что-нибудь разложить в знаменателе на множители? Можно. Здесь сумма кубов . Раскладываем знаменатель на множители, используя формулу сокращенного умножения

Шаг 3. Методом неопределенных коэффициентов разложим подынтегральную функцию в сумму элементарных дробей:

Обратите внимание, что многочлен неразложим на множители (проверьте, что дискриминант отрицательный), поэтому вверху мы ставим линейную функцию с неизвестными коэффициентами, а не просто одну буковку.

Приводим дробь к общему знаменателю:

Составим и решим систему:

(1) Из первого уравнения выражаем и подставляем во второе уравнение системы (это наиболее рациональный способ).

(2) Приводим подобные слагаемые во втором уравнении.

(3) Почленно складываем второе и третье уравнения системы.

Все дальнейшие расчеты, в принципе, устные, так как система несложная.

(1) Записываем сумму дробей в соответствии с найденными коэффициентами .

(2) Используем свойства линейности неопределенного интеграла. Что произошло во втором интеграле? С этим методом Вы можете ознакомиться в последнем параграфе урока Интегрирование некоторых дробей .

(3) Еще раз используем свойства линейности. В третьем интеграле начинаем выделять полный квадрат (предпоследний параграф урока Интегрирование некоторых дробей ).

(4) Берём второй интеграл, в третьем – выделяем полный квадрат.

(5) Берём третий интеграл. Готово.

2., 5.
,

3.
, 6.
.

В интегралах 1-3 качествеu принимают. Тогда, послеn -кратного применения формулы (19) придем к одному из табличных интегралов

,
,
.

В интегралах 4-6 при дифференцировании упроститься трансцендентный множитель
,
или
, который следует принять заu .

Вычислить следующие интегралы.

Пример 7.

Пример 8.

Приведение интегралов к самому себе

Если подынтегральная функция
имеет вид:

,
,
и так далее,

то после двукратного интегрирования по частям получим выражение, содержащее исходный интеграл :

,

где
- некоторая постоянная.

Разрешая полученное уравнение относительно , получим формулу для вычисления исходного интеграла:

.

Этот случай применения метода интегрирования по частям называется «приведение интеграла к самому себе ».

Пример 9. Вычислить интеграл
.

В правой части стоит исходный интеграл . Перенеся его в левую часть, получим:

.

Пример 10. Вычислить интеграл
.

4.5. Интегрирование простейших правильных рациональных дробей

Определение. Простейшими правильными дробями I , II и III типов называются следующие дроби:

I . ;

II .
; (
- целое положительное число);

III .
; (корни знаменателя комплексные, то есть:
.

Рассмотрим интегралы от простейших дробей.

I .
; (20)

II . ; (21)

III .
;

Преобразуем числитель дроби таким образом, чтобы выделить в числителе слагаемое
, равное производной знаменателя.

Рассмотрим первый из двух полученных интегралов и сделаем в нем замену:

Во втором интеграле дополним знаменатель до полного квадрата:

Окончательно, интеграл от дроби третьего типа равен:

=
+
. (22)

Таким образом, интеграл от простейших дробей I-го типа выражается через логарифмы,II–го типа – через рациональные функции,III-го типа – через логарифмы и арктангенсы.

4.6.Интегрирование дробно-рациональных функций

Одним из классов функций, которые имеют интеграл, выраженный через элементарные функции, является класс алгебраических рациональных функций, то есть функций, получающихся в результате конечного числа алгебраических операций над аргументом.

Всякая рациональная функция
может быть представлена в виде отношения двух многочленов
и
:

. (23)

Будем предполагать, что многочлены не имеют общих корней.

Дробь вида (23) называется правильной , если степень числителя меньше степени знаменателя, то есть,m < n . В противном случае –неправильной .

Если дробь неправильная, то, разделив числитель на знаменатель (по правилу деления многочленов), представим дробь в виде суммы многочлена и правильной дроби:

, (24)

где
- многочлен,- правильная дробь, причем степень многочлена
- не выше степени (n -1).

Пример.

Так как интегрирование многочлена сводится к сумме табличных интегралов от степенной функции, то основная трудность при интегрировании рациональных дробей заключается в интегрировании правильных рациональных дробей.

В алгебре доказано, что всякая правильная дробь разлагается на сумму рассмотренных вышепростейших дробей, вид которых определяется корнями знаменателя
.

Рассмотрим три частных случая. Здесь и далее будем считать, что коэффициент при старшей степени знаменателя
равен единице=1, то есть
многочлен приведенный .

Случай 1. Корни знаменателя, то есть, корни
уравнения
=0, действительны и различны. Тогда знаменатель представим в виде произведения линейных множителей:

а правильная дробь разлагается на простейшие дроби I-готипа:

, (26)

где
– некоторые постоянные числа, которые находятся методом неопределенных коэффициентов.

Для этого необходимо:

1. Привести правую часть разложения (26) к общему знаменателю.

2. Приравнять коэффициенты при одинаковых степенях тождественных многочленов, стоящих в числителе левой и правой частей. Получим систему линейных уравнений для определения
.

3. Решить полученную систему и найти неопределенные коэффициенты
.

Тогда интеграл дробно-рациональной функции (26) будет равен сумме интегралов от простейших дробей I-готипа, вычисляемых по формуле (20).

Пример. Вычислить интеграл
.

Решение. Разложим знаменатель на множители, используя теорему Виета:

Тогда, подынтегральная функция разлагается на сумму простейших дробей:

.

х :

Запишем систему трех уравнений для нахождения
х в левой и правой частях:

.

Укажем более простой способ нахождения неопределенных коэффициентов, называемый методом частных значений .

Полагая в равенстве (27)
получим
, откуда
. Полагая
получим
. Наконец, полагая
получим
.

.

Случай 2. Корня знаменателя
действительны,но среди них есть кратные (равные) корни. Тогда знаменатель представим в виде произведения линейных множителей, входящих в произведение в той степени, какова кратность соответствующего корня:

где
.

Правильная дробь будет разлагаться сумму дробейI–го иII-го типов. Пусть, например,- корень знаменателя кратностиk , а все остальные (n - k ) корней различны.

Тогда разложение будет иметь вид:

Аналогично, если существуют другие кратные корни. Для некратных корней в разложение (28) входят простейшие дроби первого типа.

Пример. Вычислить интеграл
.

Решение. Представим дробь в виде суммы простейших дробей первого и второго рода с неопределенными коэффициентами:

.

Приведем правую часть к общему знаменателю и приравняем многочлены, стоящие в числителях левой и правой части:

В правой части приведем подобные при одинаковых степенях х :

Запишем систему четырех уравнений для нахождения
и. Для этого приравняем коэффициенты при одинаковых степеняхх в левой и правой части

.

Случай 3. Среди корней знаменателя
есть комплексные однократные корни. То есть, в разложение знаменателя входят множители второй степени
, не разложимые на действительные линейные множители, причем они не повторяются.

Тогда в разложении дроби каждому такому множителю будет соответствовать простейшая дробь IIIтипа. Линейным множителям соответствуют простейшие дробиI–го иII-го типов.

Пример. Вычислить интеграл
.

Решение.
.

.

.

Учреждение образования «Белорусская государственная

сельскохозяйственная академия»

Кафедра высшей математики

Методические указания

по изучению темы «Интегрирование некоторых функций» студентами бухгалтерского факультета заочной формы получения образования (НИСПО)

Горки, 2013

Интегрирование некоторых функций

    Интегрирование рациональных функций

Функция вида
называется рациональной дробью , если её числитель и знаменатель являются многочленами. Рациональная дробь называется правильной , если степень числителя меньше степени знаменателя. Если же степень числителя больше либо равна степени знаменателя, то рациональная дробь называется неправильной .

Так как всякая неправильная дробь может быть представлена в виде суммы многочлена и правильной дроби, то интегрирование неправильной рациональной дроби сводится к интегрированию многочлена и правильной рациональной дроби .

Многочлены интегрируются просто. Рассмотрим интегрирование дробей вида
,
, которые называютсяпростейшими рациональными дробями .

.

.

Пусть знаменатель
дробиимеет действительные корни и может быть представлен произведением множителей вида
. Тогда для каждого такого множителя имеет место разложение вида
. Таким образом, всякую правильную рациональную дробь можно представить в виде суммы конечного числа простейших дробей. Выполняется это с помощью метода неопределённых коэффициентов.

Пример 1 . Проинтегрировать дробь
.

Решение .
Разложим подынтегральную функцию на простейшие дроби:

Приравняем коэффициенты при и свободные члены:
Решим эту систему уравнений и получим,
. Тогда

.

    Интегрирование некоторых иррациональных функций

Если подынтегральная функция иррациональна, то с помощью замены переменной во многих случаях можно привести её к рациональному виду или к такой функции, интеграл от которой является табличным. Интегрирование при помощи замены переменной, которая приводит подынтегральное выражение к рациональному виду, называется интегрированием посредством рационализации подынтегрального выражения .

Интегралы вида
приводятся к интегралам от рациональных функций аргумента t с помощью подстановки
, гдеk – наименьшее общее кратное чисел
.

Пример 2 . Найти интеграл
.

Решение . Наименьшее общее кратное чисел
и
равно 6. Поэтому нужно применить подстановку
. Тогда

. Подынтегральную функцию разложим на простейшие: . Приравняем коэффициенты прии свободные члены:
Отсюда найдём
Тогда
. Таким образом,=
. Так как
, то
. Подставим в полученное выражение:

.

Интегралы вида
приводятся к интегралам от рациональных функций с помощью подстановки
.

Пример 3 . Найти интеграл
.

Решение . Выполним подстановку
:

.

    Интегрирование выражений, содержащих

тригонометрические функции

Рассмотрим основные случаи интегрирования выражений, содержащих тригонометрические функции.

При нахождении интегралов вида
,

,
подынтегральные функции из произ-

ведений преобразовываются в суммы с помощью формул:

В результате полученные интегралы находятся с использованием методов интегрирования и таблицы интегралов. При этом можно использовать формулы
и
.

Пример 4 . Найти интеграл
.

Решение . Воспользуемся первой из вышеприведённых формул:

Интегралы вида
можно находить довольно просто в следующих случаях.

Если m – положительное нечётное число, то можно отделить первую степень синуса и применить подстановку
. Тогда
и подынтегральное выражение с помощью тригонометрических формул сведётся к степенным функциям. Еслиn - положительное нечётное число, то можно отделить первую степень косинуса и выполнить замену
. Тогда
и подынтегральное выражение с помощью тригонометрических функций тоже сведётся к степенным функциям.

Пример 5 . Найти интеграл
.

Решение .

.

Пример 6 . Найти интеграл
.

Решение .

Если m и n – неотрицательные чётные числа, то преобразование подынтегральных выражений можно выполнять с помощью формул понижения степени
и
.

Пример 7 . Найти интеграл
.

Решение .

.

Подынтегральная функция представляет собой дробь, в числителе которой находится степень синуса, а в знаменателе – степень косинуса, или наоборот. При этом показатели степени или оба чётные, или оба нечётные, т.е. одинаковой чётности.

В этом случае, если в числителе синус, то наиболее подходящей является подстановка
. Отсюда
,
,
,
.

Если же в числителе косинус, то удобно использовать подстановку
. Тогда
,
,
,
.

Пример 8 . Найти интеграл
.

Решение .


.

Нахождение интегралов вида
сводится с помощью подстановки
к нахождению интегралов от рациональных функций. Подстановка
называетсяуниверсальной тригонометрической подстановкой , которая всегда приводит к результату. В этом случае
,
,
,
,
.

Пример 9 . Найти интеграл
.

Решение .
.

Вопросы для самоконтроля знаний


приводятся к интегралам от рациональных функций?


,

    Что называется универсальной тригонометрической подстановкой и когда она используется?

Задания для самостоятельной работы

    Найти интегралы от рациональных функций:

а)
; б)
; в)
.

2) Проинтегрировать выражения, содержащие тригонометрические функции:

а)
; б)
; в)
;

г)
; д)
.