Митохондрии и пластиды. Структурно-функциональная организация хлоропластов и митохондрий Функциональная взаимосвязь хлоропластов и митохондрий

Митохондрия – это двумембранный органоид эукариотической клетки, основная функция которого синтез АТФ – источника энергии для жизнедеятельности клетки.

Количество митохондрий в клетках не постоянно, в среднем от нескольких единиц до нескольких тысяч. Там, где процессы синтеза идут интенсивно, их больше. Также варьирует размер митохондрий и их форма (округлые, вытянутые, спиральные, чашевидные и др.). Чаще имеют округлую вытянутую форму, диаметром до 1 микрометра и длиной до 10 мкм. Могут перемещаться в клетке с током цитоплазмы или оставаться в одном положении. Перемещаются к местам, где больше всего требуется выработка энергии.

Следует иметь в виду, что в клетках АТФ синтезируется не только в митохондриях, но и в цитоплазме в процессе гликолиза . Однако эффективность этих реакций невысока. Особенность функции митохондрий в том, что в них протекают реакции не только бескислородного окисления, но и кислородный этап энергетического обмена.

Другими словами, функция митохондрий – активное участие в клеточном дыхании, к которому относят множество реакций окисления органических веществ, переноса протонов водорода и электронов, идущих с выделением энергии, которая аккумулируется в АТФ.

Ферменты митохондрий

Ферменты транслоказы внутренней мембраны митохондрий осуществляют активный транспорт АДФ и АТФ.

В структуре крист выделяют элементарные частицы, состоящие из головки, ножки и основания. На головках, состоящих из фермента АТФазы , происходит синтез АТФ. АТФаза обеспечивает сопряжение фосфорилирования АДФ с реакциями дыхательной цепи.

Компоненты дыхательной цепи находятся в основании элементарных частиц в толще мембраны.

В матриксе находится большая часть ферментов цикла Кребса и окисления жирных кислот.

В результате активности электротранспортной дыхательной цепи ионы водорода поступают в нее из матрикса, а высвобождаются на наружной стороне внутренней мембраны. Это осуществляют определенные мембранные ферменты. Разница в концентрации ионов водорода по разные стороны мембраны приводит к возникновению градиента pH.

Энергию для поддержания градиента поставляет перенос электронов по дыхательной цепи. Иначе ионы водорода диффундировали бы обратно.

Энергия градиента pH используется для синтеза АТФ из АДФ:

АДФ + Ф = АТФ + H 2 O (реакция обратима)

Образующаяся вода ферментативно удаляется. Это, наряду с другими факторами, облегчает протекание реакции слева направо.

К двухмембранным органеллам клетки относятся митохондрии, пластиды.

Митохондрии (от греч. митос - нить и хондрион - зерно) - органоиды клетки, участвующие в процессе клеточного дыханияи обеспечивающие клетку энергией в виде АТФ (т.е. в такой форме, в которой энергия доступна для использования во всех энергозатратных процессах). Митохондрии встре­чаются во всех эукариотических клетках. Количество митохондрий в клетке варьирует от единиц (сперматозоиды, одноклеточные протисты) до тысяч. Особенно много митохондрий в тех клетках, которые нуждаются в большом количестве энергии (мышечные клетки, клетки печени). В клетках зеленых растений митохондрий меньше, чем в клетках животных, поскольку их функции (синтез АТФ) частично выполняют хлоропласты.

Митохондрии чаще всего имеют вид округлых телец, пало­чек, нитей. Они образованы двумя мембранами - наружной и внутренней (рис.). Наружная мембрана гладкая, она отделяет митохондрии от гиалоплазмы. Внутренняя мембрана образует выпячивания внутрь митохондрий в виде трубчатых или гребенчатых образований – крист . За счет их образуется большая общая поверхность. На мембране крист располагаются ферменты, в том числе переносчики электро­нов и протонов. Наружная мембрана отличается высокой проницаемостью для различных веществ. Внутренняя мембрана менее про­ницаема.

Между наружной и внутренней мембрана­ми митохондрий находится так называемое перимитохондриальное пространство.

Внутреннее пространство митохондрий заполне­но полужидким веществом - матриксом. В нем содержатся различные белки, в том числе фер­менты, ДНК (кольцевые молеку­лы), все типы РНК, аминокисло­ты, ряд витаминов, рибосомы, гранулы, образованные солями кальция и магния. ДНК обеспечивает некоторую ге­нетическую автономность мито­хондрий, хотя в целом их работа координируется ДНК ядра.

На поверхности внутренней мембраны имеются грибовидные образования - АТФ-сомы. В них со­держится комплекс ферментов, необходимых для синтеза АТФ.

Функция митохондрий - синтез АТФ, происходящий за счет энергии, высвобождающейся при окислении органических соединений. При этом начальные этапы этого процесса происходят в матриксе, а последующие, в частности синтез АТФ, - на внутренней мембране.

Митохондрии в клетке постоянно обновляются. Например, в клетках печени продолжительность жизни митохондрий составляет около 10 дней. Увеличение количества митохондрий в клетке происходит путем их деления.

Пластиды (от греч. пластидес - создающие, образующие) - органеллы клеток рас­тений и фототрофных протистов. Для растений характерно три вида пластид: хлоропласты, хромопласты и лейкопласты.



Хлоропласты (от греч. хлорос - зеленый) – органоиды, осуществляющие фотосинтез. Они имеют зеленый цвет, что обусловлено присутстви­ем в них светочувствительных пигментов - хлорофиллов а и b. Хлоропласты содержат также вспомогательные пигменты - каротиноиды (оранжевого, желто­го либо красного цвета). В одной клетке листа может нахо­диться 15-20 и более хлоропластов, а у некоторых водорослей - лишь 1-2 гигантских хлороплас­та различной формы (вспомните, например, строение хламидомонады, хлореллы или спирогиры).

Хлоропласты - это тельца, имеющие форму двояковыпуклой линзы. Как и митохондрии, хлоропласты образованы двумя мембранами. Наружная мембрана покрыва­ет хлоропласт. Внутренняя мембрана образует уплощенные замкнутые дисковидные образования - тилакоиды . Несколько таких тилакоидов, лежащих друг над дру­гом, образуют грану .

В мембранах тилакоидов расположены светочувствительные пигменты, а также переносчики электронов и протонов, которые участвуют в поглощении и преоб­разовании энергии света.

Между наружной и внутренней мембранами хлоропластов имеется небольшое про­странство.

Внутренняя среда хлоропласта - строма (матрикс ). В ней содержатся белки, липиды, ДНК (кольцевые молекулы), РНК, рибосомы и запасные вещества (ли­пиды, зерна крахмала), а также ферменты, участву­ющие в фиксации углекислого газа.

Основная функция хлоропластов - осуществление фотосинтеза. Кроме того, в них происходит синтез АТФ, некоторых липидов, белков мембраны тилакоидов и ферментов, катализирующих реакции фотосинтеза.

Как и митохондрии, хлоропласты могут делиться, благодаря чему их количество в клетке увеличивается.

В клетках растений могут содержаться бесцветные пластиды - лейкопласты и окрашенные - хромо­пласты.

Лейкопласты (от греч. лейкос - белый) не имеют гран и не содержат пигментов (рис.) . В них отклады­ваются запасные питательные вещества - крахмал, белки, жиры. В матриксе лейкопластов содержатся ДНК, рибосомы, а также ферменты, обеспечивающие син­тез и расщепление запасных веществ (крах­мала, белков и др.). Некоторые лейкопласты могут быть полностью заполнены крахмалом. Такие лейкопласты называются крахмальными зернами.

Хромопласты (от греч. хроматос - краска) отличаются от других пластид своеобразной формой и окраской. Они бывают дисковидными, серповидными, ромбическими, пирамидальными и т.д. (рис.). Хромопласты содержат каротиноиды, которые придают им жел­тую, оранжевую и красную окраску.

При­сутствием этих пигментов в хромоплас­тах объясняется окраска плодов томатов, рябины, ландыша, шиповника, корне­плодов моркови. Внут­ренняя система мембран в хромопластах отсутству­ет.

Необходимо отметить, что одновременно в клетках могут содержаться пластиды только одного типа.

Пластиды разных типов имеют общее происхождение: все они возникают из первичных пластид образовательной ткани, имею­щих вид мелких (до 1 мкм) пузырьков. Пластиды одного типа могут превращаться в плас­тиды другого. Так, на свету в первичных пластидах формируется внутренняя мембранная система, синте­зируется хлорофилл и они превращаются в хлоропласты. Это же характерно и для лейкопластов, которые могут превращаться в хлоропласты или хромопласты. Например, клубни картофеля, в клетках которых в большом количестве содержатся лейкопласты, на свету приобретают зеленую окраску. При старении листьев, стеблей, созревании плодов в хлоропластах разрушается хлорофилл и внутренняя мембранная система, и они превращают­ся в хромопласты. Однако хромопласты никогда не превращаются в пластиды других типов, так как яв­ляются конечным этапом развития пластид.

1. Каковы строение и функции митохондрий? 2. Какие типы пластид вам известны? 3. Каковы строение и функции хлоропластов? 4. Каковы строение и функции лейкопластов и хромопластов? 5. Какие взаимосвязи возможны между пластидами разных типов? 6. Могут ли листья с осенней окраской снова стать зелеными? Свой ответ обоснуйте. 7. Что общего и отличного в строении и функциях митохондрий и хлропластов? 8. В чем заключается автономия митохондрий и хлоропластов в клетке?

Митохондрии и пластиды представляют собой органеллы эукариотических клеток, сходные по своим функциям, морфологии и, вероятно, происхождению. Они обладают сильно развитой системой внутренних мембран, которая образуется из их оболочки и служит для интенсивного преобразования энергии.

3.7.1 Митохондрии

Форма митохондрий – в большинстве случаев от округлой до палочковидной (рис. 3.6), реже нитевидная. Размеры их от 0,5x0,5x1,0 до 1,0x1,0x5,0мкм. Оболочка митохондрий состоит из двух мембран толщиной чаще всего 7–10 нм. Между ними находится перимитохондриальное пространство, а внутри митохондрии – матрикс. Внутренняя мембрана образует многочисленные впячивания; в большинстве случаев это листовидные кристы, у многих простейших и в некоторых клетках млекопитающих – трубочки (тубулы), а у растений – часто кармановидные мешочки.

А Б

Рис. 3.6 – Митохондрии. А. Три различных типа внутренней структуры мито­хондрий: слева – тубулярный, в середине – с кристами, справа – саккулярный. Б. Разделение митохондрий на компартменты: 1 – наружная мембрана; 2 перимитохондриальное (межмембранное) пространство; 3 – внутренняя мембрана; 4 – матрикс

Наружная мембрана (как и другие мембраны эукариотических клеток), в отличие от внутренней мембраны, содержит значительные количества холестерола, но не содержит кардиолипина. Наружная мембрана проницаема для неорганических ионов и для относительно крупных молекул – аминокислот, АТР, сахарозы, промежуточных продуктов дыхания, что можно объяснить наличием туннельных белков с широкими порами.

Внутренняя мембрана с кристами по своему составу сходна с бактериальной мембраной: очень богата белком (25% липидов, 75% белков, из них 1 / 3 периферических и 2 / 3 интегральных). Она содержит очень мало холестерола; большие количества лецитина и кардиолипина, и имеет другой состав фосфолипидов. Кардиолипин встречается только у прокариот, в митохондриях и в пластидах. Проницаемость внутренней мембраны очень мала, и через нее могут диффундировать только небольшие молекулы. Поэтому в ней имеются транспортные белки для активного транспорта таких веществ, как, например, глюкоза, пируват, метаболиты цикла лимонной кислоты, аминокислоты, АТР и ADP, фосфат, Са 2+ , и др. В качестве интегральных белков во внутренней мембране и кристах находятся комплексы ферментов, участвующих в транспорте электронов (дыхательная цепь). Периферические мембранные белки – различные дегидрогеназы – окисляют субстраты дыхания, находящиеся в матриксе, и передают отнятый водород в дыхательную цепь.

Матрикс содержит промежуточные продукты обмена, некоторые ферменты цикла лимонной кислоты и окисления жирных кислот. Остальные ферменты, участвующие в этих процессах, являются периферическими белками внутренней мембраны.

В соответствии со своими функциями митохондрии с высокой интенсивностью биосинтетических процессов богаты матриксом и бедны кристами (например, в печени), в то время как митохондрии, специализированные для выработки энергии (например, «саркосомы» в мышцах), плотно заполнены кристами.

Митохондрии содержат в своем матриксе ДНК, РНК (tPHK, rPHK, mPHK, но не 5S- и 5,8S-PHK) и рибосомы (70S у растений и Protozoa, 55S у Metazoa) и способны к репликации ДНК, транскрипции и биосинтезу белка.

ДНК, как у прокариот, свободна от гистонов и негистоновых хромосомных белков и представляет собой двухцепочечную кольцевую молекулу. Митохондриальные гены, как и хромосомные, содержат интроны. В каждой митохондрии имеются 2 – 6 идентичных копий молекулы.

В митохондриальной ДНК закодированы митохондриальные rРНК и tPHK (с иной первичной структурой, чем у цитоплазматических РНК) и некоторые белки внутренней мембраны. Большинство митохондриальных белков кодируется в хромосомах и синтезируется на цитоплазматических рибосомах.

Митохондрии живут только несколько дней, размножаются поперечным делением, но могут также развиваться из промитохондрий.

Митохондриальная информация полностью сохраняется и при половом размножении.

3.7.2 Пластиды

В зависимости от типа ткани бесцветные пропластиды эмбриональных клеток развиваются в зеленые хлоропласты или в производные от них формы пластид – в желтые или красные хромопласты или в бесцветные лейкопласты.

Функция хлоропластов – фотосинтез, т. е. преобразование энергии света в химическую энергию органических веществ, прежде всего углеводов, которые эти пластиды синтезируют из бедных энергией веществ – из СО 2 и Н 2 О. Хлоропласты имеются в клетках, находящихся на свету, у высших растений – в листьях, около поверхности стебля и в молодых плодах. Эти клетки бывают зелеными, если зеленый цвет не маскируется другими пигментами хлоропластов.

Пигменты хлоропластов поглощают свет для фотосинтеза. Это в основном хлорофиллы; 70% их составляет хлорофилл а (сине-зеленый), а 30%–хлорофилл b (желто-зеленый) у высших растений и зеленых водорослей и хлорофилл с, d или е у других групп водорослей. Кроме того, все хлоропласты содержат каротиноиды: оранжево-красные каротины (углеводороды) и желтые, реже красные ксантофиллы (окисленные каротины). У красных и синезеленых водорослей встречаются также фикобилипротеиды: голубой фикоцианин и красный фикоэритрин.

В клетках высших растений, как и у некоторых водорослей, насчитывается около 10–200 чечевицеобразных хлоропластов величиной всего лишь 3–10 мкм. Оболочка хлоропласта, состоящая из двух мембран, окружает бесцветную строму, которая пронизана множеством плоских замкнутых мембранных карманов (цистерн) – тилакоидов, окрашенных в зеленый цвет (рис. 3.7). Прокариоты не имеют хлоропластов, но у них есть многочисленные тилакоиды, ограниченные плазматической мембраной.

В эукариотических растительных клетках тилакоиды образуются из складок внутренней мембраны хлоропласта. Хлоропласты от края до края пронизаны длинными тилакоидами стромы (рис. 3.7), вокруг которых в мелких чечевицеобразных хлоропластах (и только в них!) группируются плотно упакованные, короткие тилакоиды гран (рис. 3.7, А). Стопки таких тилакоидов гран видны в световом микроскопе как зеленые граны величиной 0,3–0,5 мкм.

А Б В

Рис. 3.7 – Хлоропласты. А. Расположение тилакоидов у высших растений. Б. Хлоропласт в разрезе. В. Модель взаимоотношений между тилакоидами. [По Ohmann (A), Strugger (В)]

Тилакоидные мембраны, которые содержат свыше 40 различных белков, имеют толщину 7–12 нм и очень богаты белком (содержание белка около 50%). Из липидов преобладают гликолипиды. Имеются также фосфолипиды в том числе кардиолипин. В мембранах тилакоидов осуществляется та часть реакций фотосинтеза, с которой связано преобразование энергии, – «световые реакции». В этих процессах участвуют две хлорофиллсодержащие фотосистемы I и II (ФС I и ФС II), связанные цепью транспорта электронов, и продуцирующая АТР мембранная АТРаза.

В строме осуществляются биохимические синтезы– темновые реакции фотосинтеза, в результате которых откладываются зерна крахмала (продукт фотосинтеза, пластоглобулы и кристаллы железосодержащего белка). В строме находятся ДНК, mPHK, tPHK, rPHK, 5S-PHK и 70 S -рибосомы. Как и в митохондриях, молекула ДНК замкнута в кольцо, несет гены с интронами и свободна от гистонов и негистоновых хромосомных белков. Имеется от 3 до 30 идентичных копий ДНК на каждый хлоропласт. Молекулы длиннее, чем в митохондриях (40–45, иногда до 160 мкм) и содержат больше информации: ДНК кодирует rРНК и tPHK, ДНК- и РНК-полимеразы, некоторые белки рибосом, а также цитохромы и большинство ферментов темнового процесса фотосинтеза. Однако большая часть белков пластиды кодируется в хромосомах.

Лейкопласты – это бесцветные пластиды округлой, яйцевидной или веретенообразной формы в подземных частях растений, семенах, эпидермисе, сердцевине стебля. Они содержат ДНК, зерна крахмала, пластоглобулы, единичные тилакоиды и пластидный центр. Образование тилакоидов и хлорофилла чаще всего либо генетически подавлено (корни, эпидермис), либо тормозится отсутствием света (например, у картофеля: на свету лейкопласты зеленеют и превращаются в хлоропласты). Чаще встречаются амилопласты, образующие крахмал из глюкозы и накапливающие его – главным образом в запасающих органах (клубнях, корневищах, эндосперме и т.п.).

Хромопласты являются причиной желтой, оранжевой и красной окраски многих цветков, плодов и некоторых корней. Они бывают округлыми, многогранными, чечевицеобразными, веретеновидными или кристаллоподобными, содержат пластоглобулы (часто в большом количестве), крахмальные зерна и белковые кристаллоиды, не имеют пластидного центра. Тилакоидов в них мало или совсем нет. Пигменты – свыше 50 видов каротиноидов (например, виолаксантин у анютиных глазок, ликопин в помидорах, каротин в моркови) – локализуются в трубчатых или нитевидных белковых структурах или образуют кристаллы. Хромопласты первично нефункциональны. Их вторичная роль состоит в том, что они создают зрительную приманку для животных и тем самым способствуют опылению цветков и распространению плодов и семян.

Незрелые пластиды – пропластиды – имеют неправильную форму, окружены двумя мембранами и способны к амебоидному движению. В процессе развития они увеличиваются в размерах, синтезируют крахмальные зерна и кристаллы фитоферритина, и у них образуются трубчатые или листовидные впячивания внутренней мембраны. Для превращения пропластид в хлоропласты необходим свет. Размножение пластид связано с репликацией ДНК и последующим делением пропластиды или хлоропласта надвое.

Жизнь как биологический процесс едина во всей биосфере, и она существует на основании фундаментальных принципов. А потому разные формы жизни, а также различные структурные компоненты представителей биологических видов, имеют значительные сходства. Отчасти они обеспечиваются общностью происхождения или выполнением похожих функций. В данном контексте следует детально разобрать, в чем проявляется сходство митохондрий и хлоропластов, хотя с первого взгляда эти клеточные органеллы имеют мало общего.

Митохондрии

Митохондриями называются двухмембранные клеточные структуры, ответственные за энергообеспечение ядра и органелл. Их находят в растений, грибов и животных. Они отвечают за то есть конечное усваивание кислорода, из чего в результате биохимического превращения извлекается энергия для синтеза макроэргов. Достигается это путем передачи заряда через мембрану митохондрий и ферментативное окисление глюкозы.

Хлоропласты

Хлоропластами называются клеточные органеллы растений, некоторых фотосинтезирующих бактерий и протистов. Это клеточные двухмембранные структуры, в которых синтезируется глюкоза благодаря использованию энергии солнечного света. Этот процесс достигается передачей энергии фотона и протеканием ферментативных реакций, связанных с передачей заряда через мембрану. Результатом фотосинтеза является утилизация углекислого газа, синтез глюкозы и высвобождение молекулярного кислорода.

Сходство митохондрий и хлоропластов

Хлоропласты и митохондрии являются клеточными органеллами с двумя мембранами. Первым слоем они ограждаются от цитоплазмы клетки, а второй формирует многочисленные складки, на которых протекают процессы передачи зарядов. Принцип их работы схож, однако направлен в разные стороны. У митохондрий происходит ферментативное с использованием кислорода, а в качестве продуктов реакции выступает углекислый газ. В результате превращения также синтезируется энергия.

В хлоропластах наблюдается обратный процесс — синтез глюкозы и высвобождение кислорода из углекислого газа с расходом энергии света. Это принципиальное различие между данными органеллами, но отличается лишь направление процесса. Его электрохимия практически идентична, хотя для этого используются разные посредники.

Также можно детально рассмотреть, в чем проявляется сходство митохондрий и хлоропластов. Оно заключается в автономности органелл, так как они имеют даже свою молекулу ДНК, хранящую коды структурных белков и ферментов. В обеих органеллах имеется свой автономный аппарат биосинтеза белка, потому хлоропласты и митохондрии способны самостоятельно обеспечивать себя необходимыми ферментами и восстанавливать свою структуру.

Резюме

Главное сходство митохондрий и хлоропластов — их автономия внутри клетки. Отделившись от цитоплазмы двойной мембраной и имея свой собственный комплекс ферментов биосинтеза, они ни в чем не зависят от клетки. Также они имеют свой собственный набор генов, а потому могут считаться отдельным живым организмом. Существует филогенетическая теория, что на ранних этапах развития одноклеточной жизни митохондрии и хлоропласты были простейшими прокариотами.

Она гласит, что в определенный период произошло их поглощение другой клеткой. Из-за наличия отдельной мембраны они не были расщеплены, став донором энергии для «хозяина». В ходе эволюции за счет обмена генами у доядерных организмов произошло встраивание ДНК хлоропластов и митохондрий в геном клетки-хозяина. С этого момента клетка сама была способна осуществить сборку этих органелл, если они не были переданы ей в ходе митоза.

Растительная клетка. Отличие растительной клетки от животной.

Кратко отличие клеток растений от клеток животных.

Прочной клеточной стенкой значительной толщины;

Особыми органоидами - пластидами, в которых происходит первичный синтез органических веществ из минеральных за счет энергии света;

Развитой сетью вакуолей, в значительной мере обусловливающих осмотические свойства клеток.

В растительной клетке есть все органоиды, свойственные и животной клетке: ядро, эндоплазматическая сеть, рибосомы, митохондрии, аппарат Гольджи. Вместе с тем растительная клетка имеет существенные отличия.

Растительная клетка как и животная, окружена цитоплазматической мембраной, но кроме неё ограничена толстой клеточной стенкой, состоящей из целлюлозы, которой нет у животных клеток. Клеточная стенка имеет поры, через которые каналы эндоплазматической сети соседних клеток сообщаются друг с другом.

У растительных клеток есть хлоропласты для фотосинтеза, а у животных клеток нет хлоропластов.

Еще одно различие между клетками растений и животных - клетки животных круглые в то время как растительные клетки имеют прямоугольную форму.

Кроме того, у всех животных клеток есть центриоли, в то время как лишь у некоторых низших форм растений есть центриоли (внутриклеточный органоид эукариотической клетки, представляющий тельца в структуре клетки, размер которых находится на границе разрешающей способности светового микроскопа.

У животных клеток одна или несколько мелких вакуолей, в то время как у растительных клеток одна большая центральная вакуоль, которая может занимать до 90% от объема клетки.

В клетках растений, вакуоль выполняет функции хранения воды и поддержания упругости клетки. Функции вакуоли в клетках животных: хранения воды, ионов и отходов.

Рисунок клетки растения с обозначениями.

Рисунок животной клетки с обозначениями.

Клетка, элементарная единица живого. Клетка отграничена от других клеток или от внешней среды специальной мембраной и имеет ядро или его эквивалент, в котором сосредоточена основная часть химической информации, контролирующей наследственность. Изучением строения клетки занимается цитология, функционированием – физиология. Наука, изучающая состоящие из клеток ткани, называется гистологией.



Существуют одноклеточные организмы, тело которых целиком состоит из одной клетки. К этой группе относятся бактерии и протисты (простейшие животные и одноклеточные водоросли). Иногда их также называют бесклеточными, но термин одноклеточные употребляется чаще. Настоящие многоклеточные животные (Metazoa) и растения (Metaphyta) содержат множество

Некоторые не участвующие в метаболизме структуры тела, в частности раковины, жемчужины или минеральная основа костей, образованы не клетками, а продуктами их секреции. Другие, например древесина, кора, рога, волосы и наружный слой кожи, – не секреторного происхождения, а образованы из мертвых клеток.

Мелкие организмы, такие, как коловратки, состоят всего из нескольких сотен клеток. Для сравнения: в человеческом организме насчитывается около 1014 клеток, в нем каждую секунду погибают и замещаются новыми 3 млн. эритроцитов, и это всего одна десятимиллионная часть от общего количества клеток тела.

Структура клетки.

Одно время клетка рассматривалась как более или менее гомогенная капелька органического вещества, которую называли протоплазмой или живой субстанцией. Этот термин устарел после того, как выяснилось, что клетка состоит из множества четко обособленных структур, получивших название клеточных органелл («маленьких органов»).

Химический состав. Обычно 70–80 % массы клетки составляет вода, в которой растворены разнообразные соли и низкомолекулярные органические соединения. Наиболее характерные компоненты клетки – белки и нуклеиновые кислоты. Некоторые белки являются структурными компонентами клетки, другие – ферментами, т.е. катализаторами, определяющими скорость и направление протекающих в клетках химических реакций. Нуклеиновые кислоты служат носителями наследственной информации, которая реализуется в процессе внутриклеточного синтеза белков.

Часто клетки содержат некоторое количество запасных веществ, служащих пищевым резервом. Растительные клетки в основном запасают крахмал – полимерную форму углеводов. В клетках печени и мышц запасается другой углеводный полимер – гликоген. К часто запасаемым продуктам относится также жир, хотя некоторые жиры выполняют иную функцию, а именно служат важнейшими структурными компонентами. Белки в клетках (за исключением клеток семян) обычно не запасаются.

Главные части клетки. Некоторые клетки, в основном растительные и бактериальные, имеют наружную клеточную стенку. У высших растений она состоит из целлюлозы. Стенка окружает собственно клетку, защищая ее от механических воздействий. Клетки, в особенности бактериальные, могут также секретировать слизистые вещества, образуя тем самым вокруг себя капсулу, которая, как и клеточная стенка, выполняет защитную функцию.

Собственно клетка состоит из трех основных частей. Под клеточной стенкой, если она имеется, находится клеточная мембрана. Мембрана окружает гетерогенный материал, называемый цитоплазмой. В цитоплазму погружено круглое или овальное ядро.

Клеточная мембрана.

Клеточная мембрана – очень важная часть клетки. Она удерживает вместе все клеточные компоненты и разграничивает внутреннюю и наружную среду. Кроме того, модифицированные складки клеточной мембраны образуют многие органеллы клетки.

Клеточная мембрана представляет собой двойной слой молекул (бимолекулярный слой, или бислой). В основном это молекулы фосфолипидов и других близких к ним веществ.

Основная функция клеточной мембраны заключается в регуляции переноса веществ в клетку и из клетки. Поскольку мембрана физически в какой-то мере похожа на масло, вещества, растворимые в масле или в органических растворителях, например эфир, легко проходят сквозь нее. То же относится и к таким газам, как кислород и диоксид углерода. В то же время мембрана практически непроницаема для большинства водорастворимых веществ, в частности для сахаров и солей. Благодаря этим свойствам она способна поддерживать внутри клетки химическую среду, отличающуюся от наружной.

Вакуоль.

В растительных клетках часто имеется одна большая центральная вакуоль, занимающая почти всю клетку; цитоплазма при этом образует лишь очень тонкий слой между клеточной стенкой и вакуолью. Одна из функций такой вакуоли – накопление воды, позволяющее клетке быстро увеличиваться в размерах. Эта способность особенно необходима в период, когда растительные ткани растут и образуют волокнистые структуры.

Цитоплазма.

В цитоплазме имеются внутренние мембраны, сходные с наружной и образующие органеллы различного типа. Эти мембраны можно рассматривать как складки наружной мембраны; иногда внутренние мембраны составляют единое целое с наружной, но часто внутренняя складка отшнуровывается, и контакт с наружной мембраной прерывается. Однако даже в случае сохранения контакта внутренняя и наружная мембраны не всегда химически идентичны. В особенности различается состав мембранных белков в разных клеточных органеллах.

Аппарат Гольджи.

Аппарат Гольджи (комплекс Гольджи) – это специализированная часть эндоплазматического ретикулума, состоящая из собранных в стопки плоских мембранных мешочков. Он участвует в секреции клеткой белков (в нем происходит упаковка секретируемых белков в гранулы) и поэтому особенно развит в клетках, выполняющих секреторную функцию. К важным функциям аппарата Гольджи относится также присоединение углеводных групп к белкам и использование этих белков для построения клеточной мембраны и мембраны лизосом. У некоторых водорослей в аппарате Гольджи осуществляется синтез волокон целлюлозы.

Митохондрии и хлоропласты.

Митохондрии – относительно крупные мешковидные образования с довольно сложной структурой. Они состоят из матрикса, окруженного внутренней мембраной, межмембранного пространства и наружной мембраны. Внутренняя мембрана сложена в складки, называемые кристами. На кристах размещаются скопления белков. Многие из них – ферменты, катализирующие окисление продуктов распада углеводов; другие катализируют реакции синтеза и окисления жиров. Вспомогательные ферменты, участвующие в этих процессах, растворены в матриксе митохондрий.

В митохондриях протекает окисление органических веществ, сопряженное с синтезом аденозинтрифосфата (АТФ). Распад АТФ с образованием аденозиндифосфата (АДФ) сопровождается выделением энергии, которая расходуется на различные процессы жизнедеятельности, например на синтез белков и нуклеиновых кислот, транспорт веществ внутрь клетки и из нее, передачу нервных импульсов или мышечное сокращение. Митохондрии, таким образом, являются энергетическими станциями, перерабатывающими «топливо» – жиры и углеводы – в такую форму энергии, которая может быть использована клеткой, а следовательно, и организмом в целом.

Растительные клетки тоже содержат митохондрии, но основной источник энергии для их клеток – свет. Световая энергия используется этими клетками для образования АТФ и синтеза углеводов из диоксида углерода и воды. Хлорофилл – пигмент, аккумулирующий световую энергию, – находится в хлоропластах. Хлоропласты, подобно митохондриям, имеют внутреннюю и наружную мембраны. Из выростов внутренней мембраны в процессе развития хлоропластов возникают т.н. тилакоидные мембраны; последние образуют уплощенные мешочки, собранные в стопки наподобие столбика монет; эти стопки, называемые гранами, содержат хлорофилл. Кроме хлорофилла, в хлоропластах имеются и все другие компоненты, необходимые для фотосинтеза.

Некоторые специализированные хлоропласты не осуществляют фотосинтез, а несут другие функции, например обеспечивают запасание крахмала или пигментов.

Митохондрии и хлоропласты содержат определенное количество собственного генетического материала (ДНК), который кодирует часть их структуры. Если эта ДНК утрачивается, что и происходит при подавлении образования органелл, то структура не может быть воссоздана. Оба типа органелл имеют свою собственную белок-синтезирующую систему (рибосомы и транспортные РНК), которая несколько отличается от основной белок-синтезирующей системы клетки; известно, например, что белок-синтезирующая система органелл может быть подавлена с помощью антибиотиков, тогда как на основную систему они не действуют.

ДНК органелл отвечает лишь за малую часть структуры органелл; большинство их белков закодированы в генах, расположенных в хромосомах.

Ядро.

Ядро окружено двойной мембраной. Очень узкое (порядка 40 нм) пространство между двумя мембранами называется перинуклеарным. Мембраны ядра переходят в мембраны эндоплазматического ретикулума, а перинуклеарное пространство открывается в ретикулярное. Обычно ядерная мембрана имеет очень узкие поры. По-видимому, через них осуществляется перенос крупных молекул, таких, как информационная РНК, которая синтезируется на ДНК, а затем поступает в цитоплазму.

Основная часть генетического материала находится в хромосомах клеточного ядра. Хромосомы состоят из длинных цепей двуспиральной ДНК, к которой прикрепляются основные (т.е. обладающие щелочными свойствами) белки. Иногда в хромосомах имеется несколько идентичных цепей ДНК, лежащих рядом друг с другом, – такие хромосомы называются политенными (многонитчатыми). Число хромосом у разных видов неодинаково. Диплоидные клетки тела человека содержат 46 хромосом, или 23 пары.

Деление клетки.

Хотя все клетки появляются путем деления предшествующей клетки, не все они продолжают делиться. Например, нервные клетки мозга, однажды возникнув, уже не делятся. Их количество постепенно уменьшается; поврежденные ткани мозга не способны восстанавливаться путем регенерации. Если же клетки продолжают делиться, то им свойствен клеточный цикл, состоящий из двух основных стадий: интерфазы и митоза.

МИТОЗ

После того как хромосомы удвоились, каждая из дочерних клеток должна получить полный набор хромосом. Простое деление клетки не может этого обеспечить – такой результат достигается посредством процесса, называемого митозом. Началом этого процесса - выстраивание хромосом в экваториальной плоскости клетки. Затем каждая хромосома продольно расщепляется на две хроматиды, которые начинают расходиться в противоположных направлениях, становясь самостоятельными хромосомами. В итоге на двух концах клетки располагается по полному набору хромосом. Далее клетка делится на две, и каждая дочерняя клетка получает полный набор хромосом.

Митоза животной клетке разделяют на четыре стадии.

I. Профаза.

II. Метафаза.

III. Анафаза.

IV. Телофаза.

Детали митоза несколько варьируют в разных типах клеток. В типичной растительной клетке образуется веретено, но отсутствуют центриоли. У грибов митоз происходит внутри ядра, без предшествующего распада ядерной мембраны.

Деление самой клетки, называемое цитокинезом, не имеет жесткой связи с митозом. Иногда один или несколько митозов проходят без клеточного деления; в результате образуются многоядерные клетки, часто встречающиеся у водорослей.

Размножение с помощью митоза называют бесполым размножением, вегетативным размножением или клонированием. Его наиболее важный аспект – генетический: при таком размножении не происходит расхождения наследственных факторов у потомства. Образующиеся дочерние клетки генетически в точности такие же, как и материнская. Митоз – это единственный способ самовоспроизведения у видов, не имеющих полового размножения, например у многих одноклеточных. Тем не менее даже у видов с половым размножением клетки тела делятся посредством митоза и происходят от одной клетки – оплодотворенного яйца, а потому все они генетически идентичны. Высшие растения могут размножаться бесполым путем (с помощью митоза) саженцами и усами (известный пример – клубника).

Мейоз .

Половое размножение организмов осуществляется с помощью специализированных клеток, т.н. гамет, – яйцеклетки (яйца) и спермия (сперматозоида). Гаметы, сливаясь, образуют одну клетку – зиготу. Каждая гамета гаплоидна, т.е. имеет по одному набору хромосом. Внутри набора все хромосомы разные, однако каждой хромосоме яйцеклетки соответствует одна из хромосом спермия. Зигота, таким образом, содержит уже пару таких соответствующих друг другу хромосом, которые называют гомологичными. Гомологичные хромосомы сходны, поскольку имеют одни и те же гены или их варианты (аллели), определяющие специфические признаки. Например, одна из парных хромосом может иметь ген, кодирующий группу крови А, а другая – его вариант, кодирующий группу крови В. Хромосомы зиготы, происходящие из яйцеклетки, являются материнскими, а происходящие из спермия – отцовскими. .

Деление цитоплазмы.

В результате двух мейотических делений диплоидной клетки образуются четыре клетки. При образовании мужских половых клеток получается четыре спермия примерно одинаковых размеров. При образовании же яйцеклеток деление цитоплазмы происходит очень неравномерно: одна клетка остается крупной, тогда как остальные три настолько малы, что их почти целиком занимает ядро. Эти мелкие клетки, т.н. полярные тельца, служат лишь для размещения избытка хромосом, образовавшихся в результате мейоза. Основная часть цитоплазмы, необходимой для зиготы, остается в одной клетке – яйцеклетке.

Классификация тканей.

Ткань - это филогенетически сложившаяся система клеток и неклеточных структур, обладающая общностью строения и специализированная на выполнении определенных функций. В зависимости от этого различают эпителиальную, производные мезенхимы, мышечную и нервную ткань.

Эпителиальная ткань морфологически характеризуется тесным объединением клеток в пласты. Эпителий и мезотелий (разновидность эпителия) выстилают поверхность тела, серозные оболочки, внутреннюю поверхность полых органов (пищеварительного канала, мочевого пузыря и т. д.) и образуют большинство желез.

Различают покровный и железистый эпителий

Покровный эпителий относится к пограничным, так как располагается на границе внутренней и внешней сред и через него происходит обмен веществ (всасывание и экскреция). Он также защищает подлежащие ткани от химического, механического и других видов внешнего воздействия.

Железистый эпителий обладает секреторной функцией, т. е. способностью синтезировать и выделять вещества-секреты, оказывающие специфическое влияние на процессы, протекающие в организме.

Эпителий, все клетки которого связаны с базальной мембраной, называется однослойный.

У многослойного эпителия с базальной мембраной связан только нижний слой клеток.

Различают одно- и многорядный однослойный эпителий. Для однорядного изоморфного эпителия характерны клетки одинаковой формы с ядрами, лежащими на одном уровне (в один ряд), а для многорядного, или анизоморфного - клетки различной формы с ядрами, лежащими на разных уровнях и в несколько рядов.

Многослойный эпителий, в котором клетки верхних слоев превращаются в роговые чешуйки, называют многослойным ороговевающим, а при отсутствии ороговения - многослойным неороговевающим.

Особой формой многослойного эпителия является переходный, характеризующийся тем, что его внешний вид изменяется в зависимости от растяжения подлежащей ткани (стенки почечных лоханок, мочеточников, мочевого пузыря и др.).