Датчик измерения пульса. Рейтинг лучших нагрудных пульсометров

Всем привет!

Совсем немного осталось до начала нашей краундфандинговой компании часов для измерения уровня стресса EMVIO . Появилась небольшая передышка и пальцы попросились к клавиатуре.

Немного о нашем сердце

Как известно, сердце – это автономный мышечный орган, который выполняет насосную функцию, обеспечивая непрерывный ток крови в кровеносных сосудах путем ритмичных сокращений. В сердце имеется участок, в котором генерируются импульсы, ответственные за сокращение мышечных волокон, так называемый водитель ритма (pacemaker). В нормальном состоянии, при отсутствии патологий, этот участок полностью определяет частоту сердечных сокращений. В результате образуется сердечный цикл – последовательность сокращений (систола) и расслаблений (диастола) сердечных мышц, начиная от предсердий и заканчивая желудочками. В общем случае под пульсом понимают частоту, с которой повторяется сердечный цикл. Однако есть нюансы, каким способом мы регистрируем эту частоту.

Что мы считаем пульсом

В те времена, когда медицина не имела технических средств диагностики, пульс измеряли всем известным способом – пальпацией, т.е. прикладывали палец к определенной области тела и слушали свои тактильные ощущения, и считали количество толчков стенки артерии через кожу за некоторое время - обычно 30 секунд или одну минуту. Отсюда и появилось латинское название этого эффекта - pulsus, т.е. удар, соответственно единица измерений: ударов в минуту, beatsperminute (bpm). Есть много методик пальпации, самые известные это прощупывание пульса на запястье и на шее, в области сонной артерии, который так популярен в кино.
В электрокардиографии пульс вычисляется по сигналу электрической активности сердца - электрокардиосигналу (ЭКС) путем замеров длительности интервала (в секундах) между соседними R зубцами ЭКС с последующим пересчетом в удары в минуту по простой формуле: BPM = 60/(RR-интервал) . Соответственно нужно помнить, что это желудочковый пульс, т.к. период сокращения предсердий (PP интервал) может немного отличаться.

Attention!!! Cразу хотим отметить важный момент, который вносит в путаницу в терминологию и часто встречается в комментах к статьям про гаджеты с измерением пульса. Фактически пульс, который измеряется по сокращениям стенок кровеносных сосудов, и пульс, который измеряется по электрической активности сердца, имеют разную физиологическую природу, разную форму временной кривой, различный фазовый сдвиг и соответственно требует различные методы регистрации и алгоритмы обработки. Поэтому не может быть никаких RR-интервалов при измерении пульса по модуляции объемов кровенаполнения артерий и капилляров и механических колебаний их стенок. И обратно, нельзя говорить, что если у вас нет RR-интервалов, то вы не можете измерить аналогичные по физиологической значимости интервалы по пульсовой волне.

Как гаджеты измеряют пульс?

Итак, вот наш вариант обзора самых распространённых способов измерения пульса и примеры гаждетов, которые их реализуют.

1. Измерение пульса по электрокардиосигналу

После обнаружения в конце 19 века электрической активности сердца появилась техническая возможность ее зарегистрировать.Первым, по настоящему, это сделал Виллем Эйнтховен (Willem Einthoven) в 1902 году, с помощью своего мегадевайса – струнного гальванометра (string galvanometer). Кстати он осуществил передачу ЭКГ по телефонному кабелю из больницы в лабораторию и, по сути, реализовал идею удаленного доступа к медицинским данным!


Три банки с “рассолом” и электрокардиограф весом 270 кг! Вот так рождался метод, который сегодня помогает миллионам людей во всем мире.

За свои труды в 1924 году он стал лауреатом Нобелевской премии. Именно Эйнтховен в первые получил реальную электрокардиограмму (название он придумал сам), разработал систему отведений – треугольник Эйнтховена и ввел названия сегментов ЭКС. Самым известным является комплекс QRS - момент электрического возбуждения желудочков и, как наиболее выраженный по своим временным и частотным свойствам элемент этого комплекса, зубец R.


До боли знакомый сигнал и RR-интервал!

В современной клинической практике для регистрации ЭКС используют различные системы отведений: отведения с конечностей, грудные отведения в различных конфигурациях, ортогональные отведения (по Франку) и т.п. С точки зрения измерения пульса можно использовать любые отведения, т.к. в нормальном ЭКС R зубец в том или ином виде присутствует на всех отведениях.

Спортивные нагрудные датчики пульса
При проектировании носимых гаджетов и различных спортивных тренажеров система отведений была упрощена до двух точек-электродов. Самым известным вариантом реализации такого подхода являются спортивные нагрудные мониторы в виде ремешка-кардиомонитора – HRM strap или HRM band. Думаем у читателей, ведущих спортивный образ жизни, такие устройства уже имеются.


Пример конструкции ремешка и Мистер-гаджет 80 lvl. Sensor pad – это два ЭКГ электрода с разных сторон груди.

На рынке популярностью пользуются HRM ремешки фирм Garmin и Polar, также имеется множество китайских клонов. В таких ремешках электроды выполнены в виде двух полосок из проводящего материала. Ремешок может быть частью всего устройства или пристегиваться к нему застежками-клипсами. Значения пульса, как правило, передаются по Bluetooth по протоколу ANT+ или Smart на спортивные часы или смартфон. Вполне удобно для спортивных занятий, но постоянное ношение вызывает дискомфорт.

Мы экспериментировали с такими ремешками в плане возможности оценки вариабельности пульса, считая их за эталон, но поступающие с них данные, оказались сильно сглаженными. Участник нашей команды Kvanto25 публиковал пост , как он разбирался с протоколом ремешка Polar и подключал его к компьютеру через среду Labview.

С двух рук
Следующим вариантом реализации двух электродной системы является разнесение электродов на две руки, но без постоянного подключения одной из них. В таких устройствах один электрод закрепляется на запястье в виде задней стенки часов или браслета, а другой выносится на лицевую часть устройства. Чтобы измерить пульс, нужно свободной рукой коснуться лицевого электрода и подождать несколько секунд.


Пример пульсометра с фронтальным электродом (Пульсометр Beurer)

Интересным устройством, использующим такую технологию, является браслет Phyode W/Me, разработчики которого провели успешную кампанию на Кикстартере, и их продукт имеется в продаже. На хабре про него был пост .


Электродная система PhyodeW/Me

Верхний электрод совмещен с кнопкой, поэтому многие люди, рассматривая прибор по фоткам и читая отзывы, думали, что измерение происходит просто по нажатию кнопки. Теперь вы знаете, что на подобных браслетах непрерывная регистрация со свободными руками в принципе не возможна.

Плюс этого устройства в том, что измерение пульса не является главой целью. Браслет позиционируется как средство проведения и контроля дыхательных методик, типа индивидуального тренера. Мы приобрели Phyode и проигрались с ним. Все работает, как обещано, регистрируется реальная ЭКГ, соответствующая классическому первому отведению ЭКГ. Однако прибор очень чувствителен к движениям пальца на фронтальном электроде, чуть сдвинулся и сигнал поплыл. С учетом того, что для набора статистики нужно около трех минут процесс регистрации выглядит напряжно.

Вот еще вариант использования принципа двух рук в проекте FlyShark Smartwatch, который выложен на Кикстартере .


Регистрация пульса в проекте FlyShark Smartwatch. Будьте добры подержать пальчик.

Что еще нового есть в этой области? Обязательно нужно упомянуть об интересной реализации ЭКГ электрода – емкостного датчика электрического поля EPIC Ultra High Impedance ECG Sensor производства фирмы Plessey Semiconductors.


Емкостной датчик EPIC для бесконтактной регистрации ЭКГ.

Внутри датчика установлен первичный усилитель, поэтому его можно считать активным. Датчик достаточно компактный (10х10 мм), не требует прямого электрического контакта, соответственно не имеет эффектов поляризации и их не надо смачивать. Нам кажется это решение весьма перспективным для гаджетов с регистрацией ЭКС. Готовых устройств на этих датчиках мы пока не видели.

2. Измерение пульса на основе плетизмографии

Поистине самый распространённый способ измерения пульса в клинике и быту! Сотни разнообразных устройств от прищепок до перстней. Сам метод плетизмографии основан на регистрации изменения объемов кровенаполнения органа. Результатом такой регистрации будет пульсовая волна. Клинические возможности плетизмографии выходят далеко за рамки простого определения пульса, но в данном случае нам интересен именно он.
Определение пульса на основе плетизмографии может быть реализовано двумя основными способами: импедансным и оптическим. Есть и третий вариант – механический, но мы не будем его рассматривать.
Импедансная плетизмография
Как говорит нам Медицинский словарь, импедансная плетизмография – это метод регистрации и исследования пульсовых колебаний кровенаполнения сосудов различных органов и тканей, основанный на регистрации изменений полного (омического и емкостного) электрического сопротивления переменному току высокой частоты. В России часто используется термин реография. Этот способ регистрации ведет свое начала с исследований ученого Манна (Mann, 30 –е годы) и отечественного исследователя Кедрова А.А. (40–е годы).
В настоящее время методология способа основана на двух или четырехточечной схеме измерения объемного удельного сопротивления и состоит в следующем: через исследуемый орган с помощью двух электродов пропускается сигнал с частотой от 20 до 150 кГц (в зависимости от исследуемых тканей).


Электродная система импедансной плетизмографии. Картинка отсюда

Главное условие, предъявляемое к генератору сигнала - это постоянство тока, его значение выбирают обычно не более 10-15 мкА. При прохождении сигнала через ткань его амплитуда модулируется изменением кровенаполнения. Вторая система электродов снимает модулированный сигнал, фактически имеем схему преобразователя импеданс-напряжения. При двухточечной схеме электроды генератора и приемника объединены. Далее сигнал усиливается, из него изымается несущая частота, устраняется постоянная составляющая и остается нужная нам дельта.
Если прибор откалибровать (для клиники это обязательное условие), то по оси Y можно откладывать значения в Омах. В итоге получается вот такой сигнал.



Примеры временных кривых ЭКГ, импедансной плетизмограммы (реограмме) и ее производной при синхронной регистрации. (отсюда)

Очень показательная картинка. Обратите внимание, где находится RR-интервал на ЭКС, а где расстояние между вершинами, соответствующее длительности сердечного цикла на реограмме. Также обратите внимание на резкий фронт R зубца и пологий фронт систолической фазы реограммы.

Из пульсовой кривой можно получить довольно много информации по состоянию кровообращения исследуемого органа, особенно синхронно с ЭКГ, но нам нужен только пульс. Определить его не сложно - нужно найди два локальных максимума, соответствующих максимальной амплитуде систолической волны, вычислить дельту в секундах ∆T и далее BMP = 60/∆T .

Примеров гаджетов, которые используют данный способ, мы пока не нашли. Зато есть пример концепта имплантируемого датчика для контроля кровообращения артерии. Вот про него. Активный датчик сажается прямо на артерию, с хост-девайсом общается по индуктивной связи. Мы считаем, что это очень интересное и перспективный подход. Принцип работы понятен из картинки. Спичка показана для понимания размера:) Используется 4-х точечная схема регистрации и гибкая печатная плата. Думаю, при желании, можно допилить идею для носимого микро-гаджета. Плюс этого решения в том, что потребление такого датчика исчезающее мало.


Имплантируемый сенсор кровотока и пульса. Похож на аксессуар Джонни-Мнемоника.

В завершении этого раздела сделаем ремарку. В свое время мы считали, что таким способом измеряется пульс в известном стартапе HealBeGo, поскольку в этом устройстве базовая функциональность реализуется методом импедансной спектроскопии, что, по сути, и есть реография, только с изменяемой частотой зондирующего сигнала. В общем, все уже на борту. Однако согласно описанию характеристик прибора пульс в HealBe измеряется механическим методом с помощью пьезодатчика (про этот способ во второй части обзора).

Оптическая плетизмография или фотоплетизмографияя
Оптический – это самый распространённый способ измерения пульса с точки зрения массового применения. Сужение и расширение сосуда под действием артериальной пульсации кровотока вызывают соответствующее изменение амплитуды сигнала, получаемого с выхода фотоприемника. Самые первые устройства были применены в клинике и измеряли пульс с пальца в режиме просвета или отражения. Форма пульсовой кривой повторяет реограмму.


Иллюстрация принципа работы фотоплетизмографии

Способ нашел широкое использование в клинике и вскоре технология была применена в бытовых устройствах. Например, в компактных пульсоксиметрах, регистрирующих пульс и сатурацию кислородом крови в капиллярах пальца. В мире производится сотни модификаций. Для дома, для семьи вполне пойдет, но не подходит для постоянного ношения.


Пульсоксиметр обыкновенный и клипса для уха. Тысячи их!

Существуют варианты с ушными клипсами и наушниками со встроенными датчиками. Например, такой вариант от Jabra или новый проект Glow Headphones . Функциональность аналогична HRM ремешкам, но более стильный дизайн, привычное устройство, свободный руки. Постоянно носить затычки в ушах не будешь, но для пробежек на свежем воздухе под музыку в самый раз.


Наушники Jabra Sport Pulse™ Wireless и Glow Headphones. Пульс регистрируется внутриушным (in-ear sensor) способом.

Прорыв

Самым заманчивым было измерение пульса с запястья, ведь это такое привычное и комфортное место. Первыми были часы Мио Alpha с успешной компанией на Кикстартере.

Создательница продукта Лиз Дикинсон (Liz Dickinson) пафосно провозгласила это устройство Святым Граалем измерения пульса. Модуль датчика был разработан ребятами из Philips. На сегодняшний день это самое качественное устройство для непрерывного измерения пульса с запястья методом фотоплетизмографии.


Даешь умных часов много и разных!

Сейчас можно сказать, что технология отработана и внедрена в серийное производство. Во всех подобных устройствах реализуется измерение пульса по отраженному сигналу.

Выбор длины волны излучателя

Теперь пару слов, как выбирают длину волны излучателя. Тут все зависит от решаемой задачи. Обоснование выбора хорошо иллюстрировать по графику поглощения света окси и дезоксигемоглобина с наложенными на него кривыми спектральных характеристик излучателей.


Кривая поглощения света гемоглобином и основные спектры излучения пульсовых фотоплетизмаграфических датчиков.

Выбор длины волны зависит от того, что мы хотим измерить пульс и/или сатурацию насыщения крови кислородом SO2.

Просто пульс. Для этого случая важна область, где поглощение максимально – это диапазон от 500 до 600 нм, не считая максимума в ультрафиолетовой части. Обычно выбирается значение 525 нм (зеленый цвет) или с небольшим смещением – 535 нм (применено в датчике OSRAM SFH 7050 – Photoplethysmography Sensor).


Зеленый светодиод датчика пульса – самых ходовой вариант в смарт-часах и браслетах. В датчике смартфона Samsung Galaxy S5 использован красный светодиод.

Оксиметрия. В этом режиме необходимо мерить пульс и оценивать сатурацию крови кислородом. Способ основан на разнице в поглощении связанного (окси) и не связанного с (дезоки) кислородом гемоглобина. Максимум поглощения деоксигенированного гемоглобина (Hb) находится в “красном” (660 нм) диапазоне, максимум поглощения оксигенированного (Hb02) гемоглобина в инфракасном (940 нм). Для вычисления пульса используется канал с длиной волны 660 нм.

Желтый для EMVIO. Для нашего прибора EMVIO мы выбирали из двух диапазонов: 525 nm и 590 нм (желтый цвет). При этом мы учитывали максимум спектральной чувствительности нашего оптического датчика. Эксперименты показали, что разницы между ними практически нет (в рамках нашей конструкции и выбранного датчика). Любую разницу перебивают артефакты движения, индивидуальные свойства кожи, толщина подкожного слоя запястья и степень прижатия датчика к коже. Мы захотели как-то выделиться из общего “зеленого” списка и пока остановились на желтом цвете.

Конечно, измерения можно проводить не только с запястья. Есть на рынке нестандартные варианты выбора точки регистрации пульса. Например, со лба. Такой подход использован в проекте умного шлема для велосипедистов Life beam Smart helmet разработаного Израильской компанией Lifebeam. В предложениях этой фирмы есть еще бейсболки и солнцезащитные козырьки для девушек. Если постоянно носите бейсболку, то это ваш вариант.


Велосипедист доволен, что не нужно одевать HRM ремешок.

В целом выбор точек регистрации достаточно велик: запястье, палец, мочка уха, лоб, бицпес руки, лодыжка и стопа ноги для малышей. Полное раздолье для разработчиков.

Большим плюсом оптического способа является простота реализации на современных смартфонах, где в качестве датчика используется штатная видеокамера, а в качестве излучателя – светодиод вспышки. В новом смартфоне Samsung Galaxy S5 на задней стенке корпуса, для удобства пользователя, уже имеется штатный модуль датчика пульса, возможно и другие производители будут внедрять аналогичные решения. Это может стать решающими для устройств, в которых нет непрерывной регистрации, смартфоны вберут в себя их функционал.

Новые горизонты фотоплетизмографии

Дальнейшее развитие этого способа связано с переосмыслением функционала оптического датчика и технологическими возможностями современных носимых устройств в плане обработки видеоизображений в реальном времени. В итоге имеем идею измерения пульса по видеоизображению лица. Подсветкой является естественное освещение.

Оригинальное решение, с учетом того, что видеокамера является стандартным атрибутом любого ноутбука, смартфона и даже умных часов. Идея метода раскрыта в этой работе .


Субъект N3 явно напряжен – пульс под 100 уд/мин, наверно сдает работу своему руководителю Субъекту N2. Субъект N1 просто мимо проходил.

Сначала на кадрах выделяется фрагмента лица, потом изображение раскладывается на три цветовых канала и разворачивается по временной шкале (RGB trace). Выделение пульсовой волны основано на разложение изображения методом анализа независимых компонент (ICA) и выделения частотной составляющей, связанной с модуляцией яркости пикселей под действием пульсации крови.

Лаборатория Philips Innovation реализовала аналогичный подход в виде программы Vital Signs Camera для IPhone. Весьма интересная штука. Усреднение значений конечно большое, но принципиально метод работает. Аналогичный проект развивает .


Виды экранов Vital Signs Camera.

Так что в будущем системы видеонаблюдения смогут дистанционно измерять ваш пульс. Контора АНБ возрадуется.

Окончание обзора в следующем посте “Как умные часы, спортивные трекеры и прочие гаджеты измеряют пульс? Часть 2 ”. В той части мы расскажем об более экзотических способах регистрации пульса, которые используются в современных гаджетах.

В то время, когда медицина не имела современных технических средств диагностики, пульс измеряли, прикладывая палец к артерии, и считали количество толчков стенки артерии через кожу за определенный промежуток времени - обычно 30 секунд или одну минуту. Отсюда и пошло название этого эффекта - pulsus (лат. «удар»), измеряющийся в ударах в минуту.

Существует много методик определения пульса, но самые известные - прощупывание пульса на запястье, на шее, и в области сонной артерии.

После появления электрокардиографа (ЭКГ), пульс стали вычислять по сигналу электрической активности сердца, замеряя длительность интервала (в секундах) между соседними зубцами R на ЭКГ, а затем пересчитывая в «удары в минуту» по простой формуле: ЧСС = 60/(RR-интервал).

Электрокардиограмма может многое сказать о нашем сердце и помимо пульса, но для снятия и расшифровки ЭКГ нужны оборудование и кардиолог, которых не возьмешь с собой на пробежку. К счастью, в современном мире практически каждый может позволить себе пульсометр, который будет определять частоту пульса во время бега и в состоянии покоя.

Как работает пульсометр

Измерение пульса по электрокардиосигналу

Электрическая активность сердца была обнаружена и описана в конце 19 века, а уже в 1902 году Виллем Эйнтховен стал первым, кто ее технически зарегистрировал с помощью струнного гальванометра.


Помимо этого, Эйнтховен впервые записал электрокардиограмму (он сам дал ей такое название), разработал систему отведений и ввел названия сегментов кардиограммы. За свои труды в 1924 году он стал лауреатом Нобелевской премии.


В современной клинической практике для регистрации ЭКГ используют различные системы отведений (то есть схемы прикрепления электродов): с конечностей, грудные отведения в различных конфигурациях и т.д.

Для того чтобы измерить пульс, можно использовать любые отведения - на основании этого принципа были разработаны спортивные часы, умеющие определять ЧСС.

Ранние модели пульсометров состояли из коробочки (монитор) и проводов, крепящихся к груди. Первый беспроводной ЭКГ-монитор был изобретен в 1977 году, и стал незаменимым помощником в тренировках сборной Финляндии по лыжным гонкам. В массовую продажу первые беспроводные пульсометры поступили в 1983 году, с тех пор прочно заняв свою нишу в любительском и профессиональном спорте.


При проектировании современных спортивных гаджетов система отведений была упрощена до двух точек-электродов, а самым известным вариантом такого подхода стали спортивные нагрудные датчики в виде ремешка (HRM strap/HRM band).

Для получения стабильного и качественного сигнала необходимо смочить «электроды» на нагрудном ремне водой.

В таких ремешках электроды выполнены в виде двух полосок из проводящего материала. Ремешок может быть частью всего устройства или пристегиваться к нему застежками. Значения пульса, как правило, передаются по Bluetooth на спортивные часы или смартфон по протоколу ANT+ или Smart.


Измерение пульса с помощью оптической плетизмографии

Сейчас это самый распространённый способ измерения пульса с точки зрения массового применения, реализованный в спортивных часах, трекерах, мобильных телефонах. А первые попытки использования этой технологии предпринимались ещё в 1800-х годах.


Сужение и расширение сосуда под действием пульсации кровотока вызывают соответствующее изменение амплитуды сигнала, получаемого с выхода фотоприемника.

Способ широко используется в больницах, позже технология перешла и в бытовые устройства - компактные пульсоксиметры, регистрирующие пульс и насыщение кислородом крови в капиллярах пальца. Прекрасно подходит для периодических измерений пульса, но совершенно не подходит для постоянного ношения.

Пульсометры

Идея измерения пульса с запястья спортсмена с помощью оптической плетизмографии без дополнительного ношения нагрудных ремешков выглядела очень заманчиво. Первыми эту идею реализовали в часах Mio Alpha, которые провозгласили свое устройство прорывом и новым витком в измерении пульса. Сам модуль измерительного датчика был разработан компанией Philips.


Оптическая технология измеряет пульс с помощью светодиодов, которые оценивают кровоток на запястье. Это означает, что вы можете измерять пульс без использования нагрудного датчика. На практике это работает так: оптический сенсор на обратной стороне часов излучает свет на запястье с помощью светодиодов, и измеряет количество рассеянного кровотоком света.

Метод регистрации пульса для фотоплетизмографических датчиков

Для измерения пульса важна область с максимальным поглощением - это диапазон от 500 до 600 нм. Обычно выбирается значение 525 нм (зеленый цвет). Зеленый светодиод датчика пульса – самых ходовой вариант в смарт-часах и браслетах.

Сейчас эта технология хорошо отработана и внедрена в серийное производство. Спектр появившихся устройств с подобной технологией достаточно широк (смартфоны, браслеты-трекеры, часы), а производители спортивных устройств тоже не отстают – все наиболее значимые компании расширяют линейку пульсометров моделями с оптическими датчиками.


Ошибки при работе оптических датчиков

Считается, что оптические датчики достаточно точно определяют пульс при ходьбе и беге. Однако, при повышении частоты пульса, скажем, до 160 уд/мин, кровоток настолько быстро проходит через область датчика, что измерения становятся менее точными.

Помимо этого, на запястье, где не так много ткани, но много костей, связок и сухожилий, любое снижение кровотока (например, в холодную погоду) может исказить работу оптического датчика пульсометра.

В одном небольшом исследовании был проведен сравнительный анализ точности нагрудных и оптических датчиков пульсометров. Испытуемых разделили на две группы, в одной группе пульс измерялся с помощью нагрудного датчика, а в другой - с помощью оптического. Обе группы проходили тест на беговой дорожке, где они сначала шли, а потом бежали, в этом время регистрировалась частота пульса. В группе с нагрудным кардиодатчиком точность измерения ЧСС была 91%, тогда как в группе с оптическим датчиком она составила лишь 85%.

По мнению главы компании Mio Global, в настоящее время ни один из датчиков пульсометра не сравнится в точности с нагрудным ремнем.

Нельзя забывать и о специфических ситуациях, когда оптический датчик может не работать. Надетые поверх беговой куртки часы, наличие татуировки на запястье, неплотно прилегающие к коже часы, тренировка в спортзале - всё это может привести к погрешностям в измерении пульса с помощью оптических датчиков.

Несмотря на это, технологический прогресс в измерении ЧСС привел к появлению полезной альтернативы нагрудным ремням, и при устранении ряда недостатков оптических датчиков мы получим еще один мощный и точный инструмент наблюдения за пульсом во время занятий спортом.

Какие беговые показатели позволяет получить пульсометр

Строго говоря, продвинутая беговая динамика измеряется при наличии нагрудного ремня. Внешне обычный, внутри датчик состоит из трансмиттера и акселерометра, благодаря которому и происходит анализ движения бегуна. Те же самые акселерометры есть в телефонах, футподах, браслетах-трекерах.


К продвинутым беговым показателям относят три величины: время контакта с землей (ground contact time), вертикальные колебания (vertical oscillation) и частоту шагов, или каденс (cadence).

Время контакта с землей (ground contact time, GCT) показывает как долго ваша стопа находится на поверхности земли во время каждого шага. Измеряется в миллисекундах. Типичный бегун любитель тратит на контакт с поверхностью 160-300 миллисекунд. При повышении скорости бега значение GCT укорачивается, при замедлении – возрастает.

Существует взаимосвязь между временем контакта с землей и частотой развития травм, а также мышечным дисбалансом у бегуна. Уменьшение времени контакта с землей снижает частоту травм. Одним из наиболее действенных способов уменьшить этот показатель считается укорочение шага (повышение каденса), укрепление ягодичных мышц и включение коротких спринтов в программу тренировок.

Вертикальные колебания (vertical oscillation, VO). Посмотрите на любого профессионального бегуна - вы увидите, что верхняя половина их туловища совершает совсем незначительные движения, в то время как основную работу по перемещению бегуна выполняют ноги.

Вертикальные колебания определяют насколько ваша верхняя половина «подпрыгивает» при беге. Эти подпрыгивания измеряются в сантиметрах относительно какой-то фиксированной точки (в случае нагрудного ремня - это сенсор, встроенный в нагрудный датчик). Считается, что наиболее экономичная техника бега предполагает минимальные вертикальные колебания, а уменьшение вертикальных колебаний достигается повышением каденса.

Частота шагов или каденс (cadence). Как понятно из названия показателя, он демонстрирует количество шагов за минуту. Достаточно важный параметр, оценивающий экономичность бега. Чем быстрее вы бежите, тем выше каденс. Считается, что частота около 180 шагов в минуту является оптимальной для эффективного и экономичного бега.

Пульсовые зоны (heart rate zones). Зная максимальный пульс, различные модели беговых часов могут разбивать вашу тренировку по пульсовым зонам, показывая, сколько времени в ходе тренировки вы провели в той или иной зоне.

У разных производителей эти зоны обозначены по-своему, но их можно поделить на следующие типы:

  • восстановительная зона (60% от максимального ЧСС),
  • зона для тренировки выносливости (65%-70% от максимального ЧСС),
  • зона тренировки аэробной емкости (75-82% от максимальной ЧСС),
  • зона ПАНО (82-89% от максимального ЧСС),
  • зона максимальной аэробной нагрузки (89-94% от максимального ЧСС).

Знание своих пульсовых зон поможет вам получить максимум от каждой тренировки. О тренировках по пульсу мы подробно расскажем в следующей статье рубрики.


Помимо продвинутых беговых характеристик современные пульсометры могут измерять и отслеживать еще несколько интересных показателей:

EPOC (excess post-exercise oxygen consumption). Показатель потребления кислорода после тренировки демонстрирует, насколько изменился ваш метаболизм после пробежки. Мы все знаем, что бег приводит к сжиганию калорий, но даже после того, как тренировка закончилась, калории продолжают сгорать. Безусловно, для их восполнения нужно качественно восстановиться.

Наблюдение за показателем EPOC поможет вам понять, какие тренировки наиболее энергетически затратные, а также улучшить процесс восстановления.

Подсчитанное потребление кислорода (est. VO2). Показатель текущего потребления кислорода, рассчитанный на основании максимального потребления кислорода (VO2max ) и максимальной ЧСС.

Максимальное потребление кислорода (VO2max). Показатель отражает способность вашего организма потреблять кислород. Это важно, поскольку при повышении этого показателя ваше тело может лучше и быстрее утилизировать доставляемый к работающим мышцам кислород.

Значение максимального потребления кислорода (МПК) увеличивается при повышении тренированности. Это один из самых важных беговых показателей, напрямую связанный с экономичностью бега. Как и в случае с определением максимальной ЧСС, наилучшим способом определения МПК является тестирование в лаборатории, но ряд производителей пульсометров использует алгоритмы расчета МПК приемлемой точности. Тренировки помогают улучшить значения этого показателя.

Беговая производительность (running performance). Показатель, использующий VO2max (глобальный стандарт аэробной тренированности и выносливости) для отслеживания прогресса в тренировках.

Пиковый тренировочный эффект (peak training effect, PTE). Показывает влияние тренировочной сессии на общую выносливость и аэробную производительность. Чем вы тренированнее, тем тяжелее вы должны тренироваться для того, чтобы достичь более высоких цифр PTE.

Вместо вывода

При интенсивном использовании пульсометр может быть великолепным помощником для бегуна. Крайне неверно считать пульсометр дорогой игрушкой, который совсем необязателен для «серьезных» спортсменов. Определитесь с целями на сезон, а после начните выстраивать тренировочный план.

Помните, что измерение и контроль ЧСС во время тренировок - надежный способ улучшить результаты и избежать перетренированности.

Для тех, кто только начинает свой беговой путь, можно порекомендовать сначала наблюдать за пульсом в ходе лёгких пробежек, и уже затем переходить к какому-либо тренировочному плану. Данные, полученные с помощью пульсометра, помогут понять, как ваш организм реагирует на нагрузку.

Тем не менее, не нужно становиться заложником цифр и гаджетов. Учитесь слушать свой организм, оценивайте ощущения от каждой тренировки, ну а цифры станут важным дополнительным источником информации.

По многочисленным просьбам читателей нашего блога, в дополнение к материалам по самостоятельной сборке электрокардиографа , публикуем все необходимое для сборки пульсометра. Измерять ЧСС будем оптическим методом "на отражение". В качестве датчика используется светодиод и фотоприемник, монтируемые в корпус прибора. Вы же можете сделать свой датчик любой другой конструкции (например, датчик "на просвет" из бельевой прищепки). Вашему вниманию представляем первую публичную (на самом деле - восьмую опытную) версию устройства "Pulse Lite" .

Уважаемые радиолюбители, обращаю ваше внимание, что фотоплетизмограф - устройство сложное , в котором при сборке можно наделать массу ошибок, и с "двух пинков" оно не заведется. Если вы собираетесь собирать устройство из того, что у вас есть под рукой, заменяя приведенные на принципиальной схеме детали и номиналы, учтите, что, скорее всего, устройство работать не будет. Даже домашний кардиограф "ECG Lite" в этом плане намного менее привередлив. Не следует потом пенять на разработчиков за потраченное впустую время, текстолит и радиодетали. Если Вам нужен пульсометр из парочки усилителей, светодиода и фотоприемника, используйте другие схемы, .

Первые трудности

Пару слов о том, почему фотоплетизмограф намного сложнее, чем кардиограф, с точки зрения схемотехники.

Вспомним, что электрокардиограф регистрирует электрические потенциалы, наводимые электрической активностью сердечной мышцы на теле. Эти самые бипотенциалы не имеют сильных отличий у разных людей, и в норме амплитуда сигнала (от конечностей) составляет 1 ± 0,2 мВ.

Пульсограф регистрирует сигналы оптическим методом - фотоприемник регистрирует изменение интенсивности света (в качестве источника выступает светодиод), прошедшего через палец (или рассеянного им - для датчика "на отражение"), вызванное насосной работой нашего сердца - периодическим увеличением кровенаполнения тканей.

Казалось бы, ничего сложного, если бы не два главных "НО" . Кровенаполнение, эластичность сосудов, давление и, самое главное, - толщина кожного покрова у людей отличаются чрезвычайно сильно . Это приводит к тому, что уровень постоянной засветки фотоприемника (на который влияет наша кожа и размер пальцев) и уровень переменной составляющей (давление, сосуды, состояние кровоснабжения в конечностях и проч.) отличаются у разных людей в сотни раз.

Для создания пульсографа нужны цепи формирования сигнала (драйвер) источника света, сложные инфра-низкочастотные усилители (ЭКГ - более высокочастотный сигнал), цепи, подавляющие помехи от постоянной засветки сторонних источников; а также хитрые цепи автоматической регулировки усиления.
Можете, для интереса, сравнить цены профессиональных кардиографов и пульсоксиметров (последние - намного дороже).
Надеюсь, мы вас достаточно напугали 🙂 , чтобы пропало желание собрать фотоплетизмограф самому. Не пропало? Тогда читайте дальше.

Характеристики прибора

Если вы все сделали правильно - без ошибок в плате и изменений схемы и без бракованных деталей, то на выходе вы получите устройство, которое порадует Вас следующими фичами:

  • регистрирует пульсовую волну датчиком, состоящим из светодиода и фотоприемника (можно делать датчик на просвет или на отражение);
  • передает сигнал в ПК по USB, а ПО для ПК умеет немало:
  • вычисляет мгновенную ЧСС;
  • выполняет контурный анализ пульсовой волны и анализ вариабельности сердечного ритма;
  • записывает фотоплетизмограмму любой длительности в файл;
  • выполняет автоматизированную диагностику (база диагнозов настраивается);
  • выводит на печать результаты исследований.

Ограничения данного компьютерного пульсографа:

  • не работает с прищепками Nellcor и ушными клипсами с Aliexpress!
  • не работает с последней версией программы Pulse Lite Control!
  • не измеряет оксигенацию!

Еще раз повторюсь: схема, плата и прошивка пульсометра - первой хорошо отлаженной версии фотоплетизмографа "Pulse Lite" , поэтому с прищепкой Nellcor не работает, с последней версией ПО тоже не работает. "Открывать" последнюю версию пульсографа Pulse Lite не планируем.

Все для самостоятельного изготовления

Принципиальную схему и всё необходимое для изготовления платы в домашних условиях по ЛУТ (в формате pdf) качайте по данной ссылке. В архиве находятся, помимо схемы, готовые к распечатке (учтите, зеркалить уже ничего не нужно, печатать без масштабирования, т.е. 1:1!) верхняя и нижняя стороны платы, карта переходных отверстий (вид сверху и снизу), карта расположения элементов.

Хитрости при построении схемных решений

Автор этих строк предполагает, что вы уже скачали и увидели электрическую схему фотоплетизмографа. Если вы читаете дальше, значит, желание сделать прибор все еще не пропало, и это не может не радовать 🙂 . Только таким упорным читателям мы и откроем главные тайны создания нашего девайса. Итак, чтобы принципиальная схема фотоплетизмографа стала более понятной, проясним самые важные технические решения и причины, побудившие внедрить таковые в наш прибор.

Одна из проблем фотоплетизмографии уже была нами озвучена - это чувствительность прибора к засветкам сторонних источников, влияние которых очень сложно исключить столь очевидным применением фильтрующих цепей, потому что полезный сигнал лежит в том же диапазоне частот, что и НЧ помехи (от долей до десятков Герц). Для усиления полезного сигнала (фотоплетизмограммы) было принято решение использовать принцип модуляции - демодуляции, который заключается в следующем:

  1. Переносим полезный сигнал в область высоких частот. Для этого светодиод питается не постоянным током, а переменным, частотой 5 кГц. Таким образом формируется несущий сигнал высокой частоты. При прохождении через палец интенсивность света (пульсирующего с частотой 5 кГц) меняется из-за периодических колебаний кровенаполнения. Следовательно, на фотодетектор попадает ВЧ сигнал, промодулированный по амплитуде полезным сигналом фотоплетизмограммы.
  2. Далее вполне безопасно и относительно просто выполняем фильтрацию низкочастотных помех, обусловленных сторонней засветкой, поскольку спектр полезного сигнала лежит в ВЧ диапазоне (5 кГц).
  3. Усиливаем ВЧ сигнал классическими усилителями на дешевых операционниках.
  4. Выполняем амплитудное детектирование для извлечения полезного низкочастотного сигнала (огибающей).
  5. Фильтруем и усиливаем сигнал низкой частоты.

Проблему №2 (разное кровенаполнение, толщина кожных покровов и прочее) решали реализацией автоматической регулировки коэффициента усиления высокочастотного и низкочастотного усилительных каскадов.

Собственно говоря, это все хитрости, которые, с одной стороны, усложнили схему до безобразия, с другой - сделали возможным создание фотоплетизмографа, который стабильно регистрирует пульсовую волну не только у пациента, который его разрабатывал, а у всех желающих, и который построен на базе недорогих электронных комплектующих, доступных в каждом уважающем себя магазине радиодеталей.

Поясняем схемотехнику

Теперь перейдем к подробностям. Питание фотоплетизмограф получает от ПК по кабелю USB. Гальваническая развязка прибора с ПК не реализована, поскольку при регистрации пульса электрического контакта с пациентом нет. Повышающий импульсный преобразовать питания на базе boost-контроллера NCP1406, выход которого подключен к удвоителю напряжения со средней точкой, подключенной к общему проводу GND, обеспечивает двуполярное питание ± 4В для усилительного тракта, генератора и драйвера светодиода. Питание контроллера обеспечивается отдельно от всей аналоговой части линейным стабилизатором на 3,3В NCP1117ST33T3G, поскольку для работы устройства с ПК по USB (прибор работает как HID-совместимое устройство) на линиях контроллера D+ и D- уровни не должны превышать 3,3В. Можно, конечно, поставить на линиях D+ и D- стабилитроны на 3,3В, сбрасывающие лишнее напряжение, но это приводит к лишнему потреблению, да и сама по себе развязка цепей питания аналоговой и цифровой части - это всегда плюс.

Генератор на базе микросхемы ОУ TL072 (каскад DA1:A) формирует синусоидальный сигнал, драйвер питания светодиода (DA1:B) обеспечивает электрический ток через светодиод, сила которого пропорциональна выходному напряжению генератора. Вместе генератор и драйвер обеспечивают пульсирующее излучение светодиода X1 с частотой 5 кГц и минимальными высшими гармониками. Питание светодиода прямоугольными импульсами приводит к значительному искажению полезного сигнала высшими гармониками после детектирования, поэтому и питаем светодиод синусом.

Фотодиод включен в режиме фотогальванического элемента (без внешнего обратного напряжения), R29 - нагрузочный резистор, который позволяет увеличить быстродействие датчика при таком включении. Конденсаторы C29 и C36 позволяют убрать постоянную составляющую сигнала, которая вызвана сторонними засветками. После первого ВЧ каскада усиления установлен регулируемый микроконтроллером резистивный делитель (на цифровом потенциометре MCP41010, управляемом по интерфейсу SPI).
Поскольку питание MCP41010 однополярное (+4В), ВЧ сигнал смещаем на половину питания (R35-R37). После ослабления сигнала делителем (с заданным контроллером ATMega уровнем ослабления) постоянное смещение убираем конденсатором C31, а ВЧ сигнал подаем на вход ВЧ усилителя с частотно-избирательными цепями в обратной связи (с максимумом усиления на 5 кГц) и далее на амплитудный детектор VD7-R28-C28 для извлечения полезного сигнала ФПГ (демодуляции).

Уровень ослабления сигнала резистивным делителем в ВЧ тракте подбирается исходя из величины постоянной составляющей, измеряемой АЦП контроллера на выходе детектора ADC_AMP.

После амплитудного детектирования полезный сигнал поступает на повторитель на ОУ, который служит для согласования сопротивлений, и усилитель низкой частоты на составном транзисторе VT1-VT2. Схема Дарлингтона позволяет получить минимальный уровень инфранизкочастотных шумов при высоком усилении НЧ сигнала. После усилительного НЧ каскада сигнал подается на цифровой потенциометр MCP41010 и последний каскад усиления DA2:A. Уровень ослабления сигнала потенциометром подбирается исходя из размаха сигнала, измеряемого на входе АЦП контроллера ADC_IN.

Цифровая часть фотоплетизмографа построена на базе микроконтроллера семейства AVR ATMega48. Контроллер осуществляет автоматическую регулировку усиления высокочастотных и низкочастотных каскадов, измеряет сигналы на каналах АЦП (постоянная составляющая ФПГ после демодуляции ADC_AMP и усиленный сигнал пульсограммы ADC_IN).

Итог - схема фотоплетизмографа далека от тривиальной. В ней нет лишних деталей и электрических соединений. Если вы собираетесь использоваться нашу прошивку пульсометра и нашу программу для ПК, ничего не меняйте в схеме. Если вам нужны только идеи, а реализовать собираетесь свой девайс со своей программной частью - набивайте себе шишки экспериментируйте на здоровье!

Программирование микроконтроллера

Программируется контроллер через разъем для внутрисхемного программирования X3 по интерфейсу SPI c помощью программатора STK-500, ucGoZillla , USBtiny или др. Для прошивки контроллера вам также потребуется среда Atmel AVR Studio, которую можно скачать на официальном сайте Microchip .

При программировании микроконтроллера настройки установите согласно скриншотам ниже (внимательно отнеситесь к данному пункту, дабы не превратить контроллер в "кирпич").

Что можно

  • Использовать схему (или ее части) в любых Ваших проектах (в том числе коммерческих).
  • Собирать компьютерный фотоплетизмограф для себя и своих близких, для научных экспериментов и других благих целей.
  • Написать в комментариях на сайте о проблемах или успехах в сборке прибора.
  • Сообщить в комментариях о неясностях, неточностях, о неполноте материалов по сборке фотоплетизмографа.
  • Сообщить в комментариях на сайте о возможных ошибках в материалах по сборке пульсографа.
  • Предлагать в комментариях более разумные технические решения для задач регистрации пульсовой волны.
  • Делиться информацией о сборке прибора на тематических блогах, форумах со ссылкой на первоисточник.
  • Оставлять ссылку на наш сайт в качестве благодарности авторам проекта.

Что нельзя

  • Просить исходные коды прошивки и программы для ПК 🙂 .
  • Требовать от нас написать дополнительные материалы любого содержания на тему компьютерного фотоплетизмографа (техническое задание, бизнес-план, диплом, паспорт на изделие и т.д.).
  • Просить разместить открытые материалы по сборке последней версии компьютерного фотоплетизмографа "Pulse Lite".
  • Менять схему пульсографа по своему усмотрению, а потом ругать разработчиков за неработающий результат.
  • Критиковать схемные решения без весомых аргументов и разумных предложений.

В Интернете вы без большого труда найдете более простые и дешевые схемы датчиков пульса. Наш прибор не для тех, кому просто захотелось "скоротать вечерок за паяльником и поиграть с ЧСС". Здесь мы опубликовали схему нашего восьмого по счету опытного образца фотоплетизмографа, поэтому можем с уверенностью сказать - данный прибор позволит вам зарегистрировать пульсовую волну с минимальным уровнем шума у абсолютного большинства людей. Вам не придется крутить ручки подстроечных резисторов, чтобы увидеть на экране пульс. По форме пульсовой волны вы сможете посчитать индексы жесткости и отражения, а не только мгновенную ЧСС (тем более, что программа всё сделает для вас). Данный прибор - не китайская игрушка, с "недопиленным" ПО и глюкавой прошивкой, и не поделка, сделанная навесным монтажом из "старого распая". Это полноценный компьютерный фотоплетизмограф, который может стать надежным помощником в вопросах объективного контроля вашего здоровья.

Спасибо за внимание к нашим разработкам и всем успехов в сборке вашего домашнего пульсографа!

пульсометр схема фотоплетизмограф схема пульсоксиметр своими руками пульсометр своими руками схема фотоплетизмографа купить фотоплетизмограф купить ведапульс схема элдар датчик пульса самому датчик пульса схема

Пульс - это ритмичные колебания стенок кровеносных сосудов, происходящие во время сокращений сердца. Измерения пульса очень важны для диагностики сердечно-сосудистых заболеваний. Важно следить за изменениями сердечного ритма, чтобы не допустить перегрузки организма, особенно во время занятий спортом. Один из понятных параметров пульса – частота пульса. Измеряется в количестве ударов в минуту.

Рассмотрим доступный датчик для измерения сердечного ритма – Pulse Sensor (рисунок 1).

Рисунок 1. Датчик пульса

Это аналоговый датчик, основанный на методе фотоплетизмографии - изменении оптической плотности объема крови в области, на которой проводится измерение (например, палец руки или мочка уха), вследствие изменения кровотока по сосудам в зависимости от фазы сердечного цикла. Датчик содержит источник светового излучения (светодиод зеленого цвета) и фотоприемник (рис. 2), напряжение на котором изменяется в зависимости от объема крови во время сердечных пульсаций. Это график (фотоплетизмограмма или ППГ-диаграмма) имеет форму, представленную на рис. 3.

Рисунок 2.

Рисунок 3. Фотоплетизмограмма

Датчик пульса усиливает аналоговый сигнал и нормализует относительно точки среднего значения напряжения питания датчика (V/2). Датчик пульса реагирует на относительные изменения интенсивности света. Если количество света, падающего на датчик остается постоянным, величина сигнала будет оставаться вблизи середины диапазона АЦП. Если регистрируется большая интенсивность изучения, то кривая сигнала идет вверх, если меньше интенсивность, то, наоборот, кривая идет вниз.

Рисунок 4. Регистрация удара пульса


Наш датчик пульса мы будем использовать для измерения частоты пульса, фиксируя промежуток между точками графика, когда сигнал имеет значение 50% от амплитуды волны во время начала импульса.

Технические характеристики датчика

  • Напряжение питания - 5 В;
  • Ток потребления - 4 мА;

Подключение к Arduino

Датчик имеет три вывода:
  • VCC - 5 В;
  • GND - земля;
  • S - аналоговый выход.
Для подключения датчика пульса к плате Арудино необходимо контакт S датчика подсоединить к аналоговому входу Arduino (рисунок 5).

Рисунок 5. Подключение датчика пульса к плате Arduino

Пример использования

Рассмотрим пример определения значения частоты импульса и визуализации данных сердечного цикла. Нам понадобятся следующие детали:
  • плата Arduino Uno
  • датчик пульса
Сначала подключим датчик пульса к плате Arduino согласно рис. 6. Загрузим на плату Arduino скетч из листинга 1. В данном скетче мы используем библиотеку iarduino_SensorPulse.

Листинг 1
//сайт // подключение библиотеки #include // создание экземпляра объекта // подключение к контакту A0 iarduino_SensorPulse Pulse(A0); void setup() { // запуск последовательного порта Serial.begin(9600); // запуск датчика пульса Pulse.begin(); } void loop() { // если датчик подключен к пальцу if(Pulse.check(ISP_VALID)==ISP_CONNECTED){ // печать аналогового сигнала Serial.print(Pulse.check(ISP_ANALOG)); Serial.print(" "); // печать значения пульса Serial.print(Pulse.check(ISP_PULSE)); Serial.println(); } else Serial.println("error"); } Вывод данных в монитор последовательного порта Arduino (рис. 6).

Рисунок 6. Вывод данных аналогового значения и частоты пульса в монитор последовательного порта.

Для получения графика фотоплетизмограммы на экране компьютера будем использовать хорошо знакомую Ардуинщикам среду программирования Processing, похожую на Arduino IDE. Загрузим на плату Arduino скетч (PulseSensorAmped_Arduino_1dot1.zip), а на компьютере из Processing загрузим скетч (PulseSensorAmpd_Processing_1dot1.zip). Передаваемые с платы Arduino в последовательный порт данные, мы будем получать в Processing и строить график (рис. 7).

Рисунок 7. Визуализация данных в Processing.

Еще один вариант визуализации (для компьютеров Mac) – программа Pulse Sensor. Она также получает данные, приходящие в последовательный порт от Arduino (скачать скетч PulseSensorAmped_Arduino_1dot1.zip) и выводит график, уровень сигнала и значение пульса (рис. 8).

Рисунок 8. Визуализация данных с датчика пульса в программе Pulse Sensor.

Часто задаваемые вопросы FAQ

1. Не горит зеленый светодиод датчика пульса
  • Проверьте правильность подключения датчика пульса.
2. Выводимые значения с датчика пульса "скачут"
  • Для создания постоянного (неменяющегося) внешнего фона освещения оберните датчик с одной стороны черной лентой.

3. Явно неверные показания с датчика пульса
  • Прикладывать датчик пульса следует правильно – между центром подушечки и изгибом пальца.

Sasmsung Galaxy S5 - отличный современный смартфон, но ничто в нём не удивляет больше, чем встроенный датчик сердцебиения, который связан с фирменным приложением S Health. Датчик, который имеет очень маленький размер и располагается на тыльной стороне устройства сразу под камерой дает весьма точные данные об уровне Вашего сердечного ритма. Вы можете его узнать во время утренней пробежки или в любое другое время. Давайте же разберемся в том, как его использовать!

О ЧЁМ СТАТЬЯ?

Действия

1. Откройте обзор приложений

  • Сделайте это, нажав «Приложения» в правом нижнем углу экрана.

2. Запустите приложение «S Health»


  • В пользовательском интерфейсе S Health вы должны увидеть значки в верхней части, которые сообщают вам показания шагомера, подсчитанные калории, а также потребление калорий, которое вы зарегистрировали в приложении. Ниже вы увидите некоторые значки, с которыми вы можете взаимодействовать.

3. На главной странице приложения нажмите на Heart Rate


  • Это зеленый значок с белым сердцем внутри.

4. Прикоснитесь пальцем к датчику сердцебиения под камерой, он загорится красным цветом

Удерживайте его в таком положении несколько секунд пока данные не считаются. Обратите внимание, что первые пару раз смартфон может не считать Ваши показатели. Датчик очень восприимчив к движениям, влажности и другим факторам. Чтобы улучшить качество съема показателя рекомендуем следовать следующим советам:

  • Используйте датчик только сухим пальцем
  • Удерживайте палец на датчике столько, сколько можете. Не торопитесь!
  • Не кричите! Сильный шум может повлиять на работу датчика.
  • Если считывание показателя не происходит, попробуйте задержать дыхание. Иногда это помогает.

Это интересно

Согласно Samsung, установка датчика сердечного ритма является результатом недавней тенденции пристального контроля здоровья, и одной из идей фирмы - «усилия компании Samsung направлены на удовлетворение потребностей и предпочтений людей». После объяснения технических особенностей измерения частоты сердечных сокращений, Samsung говорит о том, почему они добавили в смартфон датчик сердечного ритма вместо какой-либо другой интересной функции. «Частота сердечных сокращений является одним из наиболее часто измеряемых показателей здоровья. Датчик сердечного ритма позволяет проверить в каком режиме работает ваше сердце до, во время и после тренировки». Флагман и носимые устройства всегда под рукой, это и побудило компанию добавить в них такую функцию.